摘要:
Flat, thin AlN membranes and methods of their manufacture are made available.An AlN thin film (2) contains between 0.001 wt. % and 10 wt. % additive atomic element of one or more type selected from Group-III atoms, Group-IV atoms and Group-V atoms. Onto a base material (1), the AlN thin film (2) is formable utilizing a plasma generated by setting inside a vacuum chamber an sintered AlN ceramic containing between 0.001 wt. % and 10 wt. % additive atomic element of one or more type selected from Group-III atoms, Group-IV atoms and Group-V atoms, and with the base material having been set within the vacuum chamber, irradiating the sintered AlN ceramic with a laser.
摘要:
Methods of growing and manufacturing aluminum nitride crystal, and aluminum nitride crystal produced by the methods. Preventing sublimation of the starting substrate allows aluminum nitride crystal of excellent crystallinity to be grown at improved growth rates. The aluminum nitride crystal growth method includes the following steps. Initially, a laminar baseplate is prepared, furnished with a starting substrate having a major surface and a back side, a first layer formed on the back side, and a second layer formed on the first layer. Aluminum nitride crystal is then grown onto the major surface of the starting substrate by vapor deposition. The first layer is made of a substance that at the temperatures at which the aluminum nitride crystal is grown is less liable to sublimate than the starting substrate. The second layer is made of a substance whose thermal conductivity is higher than that of the first layer.
摘要:
The present III-nitride crystal manufacturing method, a method of manufacturing a III-nitride crystal (20) having a major surface (20m) of plane orientation other than {0001}, designated by choice, includes: a step of slicing III-nitride bulk crystal (1) into a plurality of III-nitride crystal substrates (10p), (10q) having major surfaces (10pm), (10qm) of the designated plane orientation; a step of disposing the substrates (10p), (10q) adjoining each other sideways in such a way that the major surfaces (10pm), (10qm) of the substrates (10p), (10q) parallel each other and so that the [0001] directions in the substrates (10p), (10q) are oriented in the same way; and a step of growing III-nitride crystal (20) onto the major surfaces (10pm), (10qm) of the substrates (10p), (10q).
摘要:
There is provided an AlGaN bulk crystal manufacturing method for manufacturing a high-quality AlGaN bulk crystal having a large thickness. Also, there is provided an AlGaN substrate manufacturing method for manufacturing a high-quality AlGaN substrate. The AlGaN bulk crystal manufacturing method includes the following steps: First, a support substrate composed of AlaGa(1-a)N (0
摘要:
Affords an AlxGa1-xN single crystal suitable as an electromagnetic wave transmission body, and an electromagnetic wave transmission body that includes the AlxGa1-xN single crystals.The AlxGa1-xN (0
摘要翻译:提供适合作为电磁波传播体的Al x Ga 1-x N单晶,以及包含Al x Ga 1-x N单晶的电磁波透过体。 Al x Ga 1-x N(0
摘要:
A compound semiconductor single-crystal manufacturing device (1) is furnished with: a laser light source (6) making it possible to sublime a source material by directing a laser beam onto the material; a reaction vessel (2) having a laser entry window (5) through which the laser beam output from the laser light source (6) can be transmitted to introduce the beam into the vessel interior, and that is capable of retaining a starting substrate (3) where sublimed source material is recrystallized; and a heater (7) making it possible to heat the starting substrate (3). The laser beam is shone on, to heat and thereby sublime, the source material within the reaction vessel (2), and compound semiconductor single crystal is grown by recrystallizing the sublimed source material onto the starting substrate (3); afterwards the laser beam is employed to separate the compound semiconductor single crystal from the starting substrate (3).
摘要:
A method for growing a Group III nitride semiconductor crystal is provided with the following steps: First, a chamber including a heat-shielding portion for shielding heat radiation from a material 13 therein is prepared. Then, material 13 is arranged on one side of heat-shielding portion in chamber. Then, by heating material to be sublimated, a material gas is deposited on the other side of heat-shielding portion in chamber so that a Group III nitride semiconductor crystal is grown.
摘要:
A compound semiconductor single-crystal manufacturing device (1) is furnished with: a laser light source (6) making it possible to sublime a source material by directing a laser beam onto the material; a reaction vessel (2) having a laser entry window (5) through which the laser beam output from the laser light source (6) can be transmitted to introduce the beam into the vessel interior, and that is capable of retaining a starting substrate (3) where sublimed source material is recrystallized; and a heater (7) making it possible to heat the starting substrate (3). The laser beam is shone on, to heat and thereby sublime, the source material within the reaction vessel (2), and compound semiconductor single crystal is grown by recrystallizing the sublimed source material onto the starting substrate (3); afterwards the laser beam is employed to separate the compound semiconductor single crystal from the starting substrate (3).
摘要:
A method for producing a group III-nitride crystal having a large thickness and high quality and a group III-nitride crystal are provided. A method for producing a group III-nitride crystal 13 includes the following steps: A underlying substrate 11 having a major surface 11a tilted toward the direction with respect to the (0001) plane is prepared. The group III-nitride crystal 13 is grown by vapor-phase epitaxy on the major surface 11a of the underlying substrate 11. The major surface 11a of the underlying substrate 11 is preferably a plane tilted at an angle of −5° to 5° from the {01-10} plane.