摘要:
A traction control device of a six-wheel drive construction machine, the drive construction machine including: right and left front wheels connected to each other via an axle, right and left center wheels connected to each other via an axle, and right and left rear wheels connected to each other via an axle, the right and left front, center and rear wheels being driven as driving wheels; a braking mechanism provided to each of the wheels; and a differential adjusting mechanism for adjusting a differential between the front and rear driving wheels, the traction control device controls the braking mechanisms only for the driving wheels related to any two of axles while controlling the differential adjusting mechanism.
摘要:
The invention provides a traction control device capable of ensuring a sufficient acceleration and course traceability during the turning of a vehicle irrespective of the type of driving system or a road surface condition. A traction control device of the invention includes: a control-start determiner that determines whether or not to control a braking mechanism; and a traction force estimating section that estimates a traction force between each of wheels and the road surface. The traction force estimating section includes: a control condition determining section that determines a control condition of the braking mechanism based on a result of the determination of the control-start determiner; a traction force initial value setting section that sets an initial value in accordance with a result of the determination of the control condition determining section; and a traction force modifying section that modifies the traction force based on a control deviation.
摘要:
III-nitride crystal composites are made up of especially processed crystal slices cut from III-nitride bulk crystal having, ordinarily, a {0001} major surface and disposed adjoining each other sideways, and of III-nitride crystal epitaxially on the bulk-crystal slices. The slices are arranged in such a way that their major surfaces parallel each other, but are not necessarily flush with each other, and so that the [0001] directions in the slices are oriented in the same way.
摘要:
A method of manufacturing a semiconductor wafer of the present invention includes the steps of: obtaining a composite base by forming a base surface flattening layer having a surface RMS roughness of not more than 1.0 nm on a base; obtaining a composite substrate by attaching a semiconductor crystal layer to a side of the composite base where the base surface flattening layer is located; growing at least one semiconductor layer on the semiconductor crystal layer of the composite substrate; and obtaining the semiconductor wafer including the semiconductor crystal layer and the semiconductor layer by removing the base surface flattening layer by wet etching and thereby separating the semiconductor crystal layer from the base. Thus, a method of manufacturing a semiconductor wafer capable of efficiently manufacturing the semiconductor wafer regardless of the type of a base, and a composite base and a composite substrate suitably used in that manufacturing method are provided to efficiently manufacture a semiconductor device.
摘要:
The invention relates to a GaN-crystal free-standing substrate obtained from a GaN crystal grown by HVPE with a (0001) plane serving as a crystal growth plane and at least one plane of a {10-11} plane and a {11-22} plane serving as a crystal growth plane that constitutes a facet crystal region, except for the side surface of the crystal, wherein the (0001)-plane-growth crystal region has a carbon concentration of 5×1016 atoms/cm3 or less, a silicon concentration of 5×1017 atoms/cm3 or more and 2×1018 atoms/cm3 or less, and an oxygen concentration of 1×1017 atoms/cm3 or less; and the facet crystal region has a carbon concentration of 3×1016 atoms/cm3 or less, a silicon concentration of 5×1017 atoms/cm3 or less, and an oxygen concentration of 5×1017 atoms/cm3 or more and 5×1018 atoms/cm3 or less.
摘要翻译:本发明涉及由具有(0001)面作为晶体生长面的HVPE生长的GaN晶体和{10-11}面和{11-11面]的至少一个平面而获得的GaN结晶自立式基板, (0001)平面生长晶体区域的碳浓度为5×1016原子/ cm3以下的构成除了晶体侧面以外的构成晶面区域的晶体生长面, 硅浓度为5×10 17原子/ cm 3以上且2×10 18原子/ cm 3以下,氧浓度为1×10 17原子/ cm 3以下。 并且小面晶体区域的碳浓度为3×1016原子/ cm3以下,硅浓度为5×10 17原子/ cm 3以下,氧浓度为5×10 17原子/ cm 3以上且5×10 18原子 / cm3以下。
摘要:
A vehicle speed estimator includes a unit that selects a minimum rotation speed among rotation speeds of wheels detected by a rotation speed detector and calculates a reference wheel speed of a construction vehicle at every predetermined time. The unit includes: a variable filter processor that performs a low-pass filter processing to the minimum rotation speed, the variable filter processor having a variable time constant; and a time constant changer that changes the time constant of the variable filter processor in accordance with travel conditions of the construction vehicle.
摘要:
Affords methods of manufacturing bulk III-nitride crystals whereby at least the surface dislocation density is low globally.The present III-nitride crystal manufacturing method includes: a step of preparing an undersubstrate (1) containing a III-nitride seed crystal, the III-nitride seed crystal having a matrix (1s), and inversion domains (1t) in which the polarity in the directions is inverted with respect to the matrix (1s); and a step of growing a III-nitride crystal (10) onto the matrix (1s) and inversion domains (1t) of the undersubstrate (1) by a liquid-phase technique; and is characterized in that a first region (10s), being where the growth rate of III-nitride crystal (10) growing onto the matrix (1s) is greater, covers second regions (10t), being where the growth rate of III-nitride crystal (10) growing onto the inversion domains (1t) is lesser.
摘要:
A method for growing a GaN crystal includes a step of preparing a substrate (10) that includes a main surface (10m) and includes a Gax Aly In1-x-y N seed crystal (10a) including the main surface (10m) and a step of growing a GaN crystal (20) on the main surface (10m) at an atmosphere temperature of 800° C. or more and 1500° C. or less and at an atmosphere pressure of 500 atmospheres or more and less than 2000 atmospheres by bringing a solution (7) provided by dissolving (5) nitrogen in a Ga melt (3) into contact with the main surface (10m) of the substrate (10). The method further includes, after the step of preparing the substrate (10) and before the step of growing the GaN crystal (20), a step of etching the main surface (10m) of the substrate (10). Thus, a method for growing a GaN crystal having a low dislocation density and high crystallinity is provided without adding impurities other than raw materials to the melt and without increasing the size of a crystal growth apparatus.
摘要翻译:一种用于生长GaN晶体的方法包括制备包括主表面(10m)并包括主表面(10m)的Gax Aly In 1-xy N晶种(10a)的衬底(10)的步骤和 在800℃以上且1500℃以下的气氛温度和500大气压以上且小于2000个大气压的气氛下,在主表面(10μm)上生长GaN晶体(20),通过使 通过将(5)氮在Ga熔体(3)中溶解以与衬底(10)的主表面(10m)接触而提供的溶液(7)。 该方法还包括在制备衬底(10)的步骤之后和生长GaN晶体(20)的步骤之前,蚀刻衬底(10)的主表面(10m)的步骤。 因此,提供了一种生长具有低位错密度和高结晶度的GaN晶体的方法,而不增加熔体中的原料以外的杂质,而不增加晶体生长装置的尺寸。
摘要:
Affords group III nitride crystal growth methods enabling crystal to be grown in bulk by a liquid-phase technique. One such method of growing group III nitride crystal from solution is provided with: a step of preparing a substrate having a principal face and including at least on its principal-face side a group III nitride seed crystal having the same chemical composition as the group III nitride crystal, and whose average density of threading dislocations along the principal face being 5×106 cm−2 or less; and a step of bringing into contact with the principal face of the substrate a solution in which a nitrogen-containing gas is dissolved into a group III metal-containing solvent, to grow group III nitride crystal onto the principal face.
摘要翻译:提供III族氮化物晶体生长方法,使得晶体能够通过液相技术在本体中生长。 提供了从溶液中生长III族氮化物晶体的一种这样的方法:制备具有主面并且至少在其主面上至少包括与III组相同的化学组成的III族氮化物晶种的基板的步骤 氮化物晶体,并且其主面上的穿透位错的平均密度为5×10 6 cm -2以下; 以及使含氮气体溶解在含有III族金属的溶剂中的溶液与基板的主面接触的步骤,将III族氮化物晶体生长到主面上。
摘要:
A III-nitride crystal growth method that enables growing large-scale crystal under a liquid-phase technique is made available. The present III-nitride crystal growth method is a method of growing III-nitride crystal (10) by a liquid-phase technique, and is provided with: a step of preparing a III-nitride crystal substrate (1) having the same chemical composition as the III-nitride crystal (10), and having a thickness of not less than 0.5 mm; and a step of contacting onto a major surface (1m) of the III-nitride crystal substrate (1) a solution in which a nitrogen-containing gas (5) is dissolved in a solvent (3) that includes a Group-III metal, to grow III-nitride crystal (10) onto the major surface (1m).