摘要:
System and method for metal-oxide-semiconductor field effect transistor. In a specific embodiment, the invention provides a field effect transistor (FET), which includes a substrate material, the substrate material being characterized by a first conductivity type, the substrate material including a first portion, a second portion, and a third portion, the third portion being positioned between the first portion and the second portion. The FET also includes a source portion positioned within the first portion, the source portion being characterized by a second conductivity type, the second conductivity type being opposite of the first conductivity type. A first drain portion is positioned within second portion and characterized by the second conductivity type and a first doping concentration. A second drain portion is positioned within the second portion and is characterized by the second conductivity type and a second doping concentration, the second doping concentration being different from the first doping concentration.
摘要:
A Ge and Si hybrid material accumulation mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of p-type Ge and n-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an accumulation mode, current flows through the overall racetrack-shaped channel. The disclosed device has high carrier mobility, high device drive current, and maintains the electrical integrity of the device. Meanwhile, polysilicon gate depletion and short channel effects are prevented.
摘要:
The present invention discloses an LED and its fabrication method. The LED comprises: a sapphire substrate; an epitaxial layer, an active layer and a capping layer arranged on the sapphire substrate in sequence; wherein a plurality of cone-shaped structures are formed on the surface of the sapphire substrate close to the epitaxial layer. The cone-shaped structures can increase the light reflected by the sapphire substrate, raising the external quantum efficiency of the LED, thus increasing the light utilization rate of the LED. Furthermore, the formation of a plurality of cone-shaped structures can improve the lattice matching between the sapphire substrate and other films, reducing the crystal defects in the film formed on the sapphire substrate, increasing the internal quantum efficiency of the LED.
摘要:
The present invention discloses an LED and its fabrication method. The LED comprises: a substrate; an epitaxial layer, an active layer and a capping layer arranged on the substrate in sequence; wherein a plurality of microlens structures arc formed on the surface of the substrate away from the epitaxial layer, and a plurality of cams are formed on the surfaces of the microlens structures. When the light emitted from the active layer passes through the surfaces of the microlens structures or the surfaces of the cams, the incident angle is always smaller than the critical angle of total reflection, thus preventing total reflection and making sure that most of the light pass through the surfaces of the microlens structures and the cams, in this way improving external quantum efficiency of the LED, avoiding the rise of the internal temperature of the LED and improving the performance of the LED.
摘要:
Nonvolatile memory devices having a low off state leakage current and an excellent data retention time characteristics. The present invention provides a surrounding stacked gate fin field effect transistor nonvolatile memory structure comprising a silicon-on-insulator substrate of a first conductivity type and a fin active region projecting from an upper surface of the insulator. The structure further includes a tunnel oxide layer formed on the fin active region and a first gate electrode disposed on the tunnel oxide layer and upper surface of the insulator. Additionally, the structure includes an oxide/nitride/oxide (ONO) composite layer formed on the first gate electrode, a second gate electrode formed on the ONO composite layer and patterned so as to define a predetermined area of the ONO composite layer. The structure further includes a dielectric spacer formed on a sidewall of the second gate electrode and source/drain regions formed in the fin active region on both sides of the second gate electrode.
摘要:
present invention discloses a manufacturing method for a copper interconnection structure with MIM capacitor. The method firstly makes a copper conductive pattern in a copper interconnection structure and a copper through hole bolt connected with the copper conductive pattern; etch away an insulation layer around the copper through hole bolt and deposit a etch stop layer, so as to expose the top and side surface of the copper through hole bolt and part of the top surface of the copper conductive pattern; deposit a dielectric layer on the obtained structure and fill a protection material in the recession area of the obtained structure; etch a trench for receiving other copper conductive patterns; remove the protection material; plate copper in the recession area, and plate copper in the trench, so as to obtain a copper interconnection structure with MIM capacitor.
摘要:
A Ge and Si hybrid material inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Ge and p-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an inversion mode, the devices have hybrid material, GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, prevent polysilicon gate depletion and short channel effects.
摘要:
A SOI MOS device for eliminating floating body effects and self-heating effects are disclosed. The device includes a connective layer coupling the active gate channel to the Si substrate. The connective layer provides electrical and thermal passages during device operation, which could eliminate floating body effects and self-heating effects. An example of a MOS device having a SiGe connector between a Si active channel and a Si substrate is disclosed in detail and a manufacturing process is provided.
摘要:
A Ge and Si hybrid material inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Ge and p-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an inversion mode, the devices have hybrid material, GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, prevent polysilicon gate depletion and short channel effects.
摘要:
A method for making a semiconductor device with at least two gate regions. The method includes providing a substrate region including a surface. Additionally, the method includes forming a source region in the substrate region by at least implanting a first plurality of ions into the substrate region and forming a drain region in the substrate region by at least implanting a second plurality of ions into the substrate region. The drain region and the source region are separate from each other. Moreover, the method includes depositing a gate layer on the surface and forming a first gate region and a second gate region on the surface.