Abstract:
This invention provides plants having resistance to invertebrate pests. More specifically, this invention discloses a non-natural transgenic plant cell expressing at least one invertebrate miRNA in planta for suppression of a target gene of an invertebrate pest or of a symbiont associated with the invertebrate pest. Also provided are recombinant DNA constructs for expression of at least one invertebrate miRNA in planta, a non-natural transgenic plant containing the non-natural transgenic plant cell of this invention, a non-natural transgenic plant grown from the non-natural transgenic plant cell of this invention, and non-natural transgenic seed produced by the non-natural transgenic plants, as well as commodity products produced from a non-natural transgenic plant cell, plant, or seed of this invention. This invention further provides a method of suppressing at least one target gene of an invertebrate pest of a plant or of a symbiont associated with the invertebrate, including providing a plant including the non-natural transgenic plant cell of this invention, wherein the invertebrate is the invertebrate pest, the recombinant DNA is transcribed in the non-natural transgenic plant cell to the recombinant miRNA precursor, and when the invertebrate pest ingests the recombinant miRNA precursor, the at least one target gene is suppressed.
Abstract:
The invention provides methods and compositions for selectively suppressing the expression of a recombinant protein in a male reproductive tissue of a transgenic plant. The invention also provides methods and compositions for inducing male sterility in a transgenic plant. Plants, plant cells, plant parts, seeds, and commodity products including such compositions are aspects of the invention.
Abstract:
This invention provides molecular constructs and methods for the temporally specific control of gene expression in plants or in plant pests or pathogens. More specifically, this invention provides plant miRNA genes having novel circadian expression patterns that are useful for designing recombinant DNA constructs for temporally specific expression of at least one gene. Also provided are non-natural transgenic plant cells, plants, and seeds containing in their genome a recombinant DNA construct of this invention.
Abstract:
The invention provides recombinant DNA molecules useful for providing efficient expression of proteins in transgenic plants, as well as compositions and methods for using the recombinant DNA molecules. In particular embodiments, the invention provides recombinant DNA molecules and constructs comprising sequences encoding transit peptides and operably linked sequences conferring herbicide tolerance.
Abstract:
The invention provides methods and compositions for selectively suppressing the expression of a recombinant protein in a male reproductive tissue of a transgenic plant. The invention also provides methods and compositions for inducing male sterility in a transgenic plant. Plants, plant cells, plant parts, seeds, and commodity products including such compositions are aspects of the invention.
Abstract:
Described herein are transgenic soybean chromosomes containing a recombinant DNA that transcribes to an RNA molecule that hybridizes to and forms a cleavage-resistant duplex with either a mature miR171 miRNA or a transcript of a target gene having a recognition site for a mature miR171 miRNA whereby the function of the miR171 miRNA is inhibited and thereby imparts enhanced agronomic traits to soybean plants such as increased pods per node, increased number of nodes, a decreased distance between nodes, and a twisted stem.
Abstract:
This invention provides recombinant DNA constructs and methods for manipulating expression of a target gene that is regulated by a small RNA, by interfering with the binding of the small RNA to its target gene. More specifically, this invention discloses recombinant DNA constructs encoding cleavage blockers, 5-modified cleavage blockers, and translational inhibitors useful for modulating expression of a target gene and methods for their use. Further disclosed are miRNA targets useful for designing recombinant DNA constructs including miRNA-unresponsive transgenes, miRNA decoys, cleavage blockers, 5-modified cleavage blockers, and translational inhibitors, as well as methods for their use, and transgenic eukaryotic cells and organisms containing such constructs.
Abstract:
This invention discloses novel microRNAs and their precursors, and recombinant DNA constructs including such novel miRNAs, miRNA precursors, miRNA promoters, and miRNA recognition sites corresponding to the miRNAs. Included are novel miRNA and miRNA precursors that exhibit nutrient-responsive expression. Also disclosed are miRNA decoy sequences. Further provided are non-natural transgenic plant cells, plants, and seeds containing in their genome a recombinant DNA construct of this invention and methods of controlling gene expression using recombinant DNA constructs of this invention.
Abstract:
This invention provides molecular constructs and methods for the temporally specific control of gene expression in plants or in plant pests or pathogens. More specifically, this invention provides plant miRNA genes having novel circadian expression patterns that are useful for designing recombinant DNA constructs for temporally specific expression of at least one gene. Also provided are non-natural transgenic plant cells, plants, and seeds containing in their genome a recombinant DNA construct of this invention.
Abstract:
The invention provides novel recombinant DNA molecules, compositions, and methods for selectively regulating the expression of a transcribable polynucleotide molecule or recombinant protein in a male reproductive tissue of a transgenic plant. The invention also provides transgenic plants, plant cells, plant parts, seeds, and commodity products comprising such DNA molecules and compositions.