Abstract:
An air-permeable composite fabric is provided. The composite fabric has an inner fabric layer, an outer fabric layer, and an intermediate vapor barrier. The vapor barrier is selected from adhesive material and an adhesive/membrane combination designed so the composite fabric has a level of air permeability to allow air flow between the first fabric layer and the second fabric layer and a variable level of water vapor diffusion resistance that decreases as air speed impinging on the composite fabric increases.
Abstract:
A composite textile fabric for removing moisture from the skin is provided. The composite fabric includes an inner, first fabric layer comprising either a polyester, polypropylene, acrylic or nylon yam material which is naturally, or has been rendered, hydrophilic and an outer, second fabric layer incorporating either a moisture-absorbent material such as cotton or a synthetic yarn which has been rendered hydrophilic, or a combination thereof. The first and second fabric layers are formed concurrently by knitting a plaited construction. The second fabric layer, but not the first layer, is blended with synthetic fibers treated to have antimicrobial properties or the second fabric layer is treated with an anti-microbial paste. An elastomeric yarn material may be added to both layers so that the composite fabric is stretchable.
Abstract:
Methods of forming an electric heating/warming composite fabric article include the steps of applying an electricity-conducting paste upon a surface in a predetermined pattern of an electric circuit, and curing the electricity-conducting paste to form an electric heating/warming element in the form of a flexible, electricity-conducting film defining an electric circuit, the electric heating/warming element being adapted for connection to a power source, thereby to generate heating/warming. The fabric article includes a fabric layer, and may include a barrier layer joined to or associated with a surface of the fabric layer. The electric circuit may be formed directly upon a surface of the fabric layer or upon a surface of the barrier layer. The circuit may be formed and cured upon the barrier layer before or after it is joined to the fabric layer.
Abstract:
A fabric with a patterned velvet on one face and a different patterned velour on the other is formed from a three dimensional fabric using a double bar knitting machine. Preferably, at least either the stitching or backing yarn within the fabrics is made with a bulk high enough so that after the three dimensional structure is knitted and split, the back can be napped to form the velour from such yarn.
Abstract:
A raised surface fabric knit on a conventional terry knitting machine is provided. The process utilizes yarns of different color or dyeability in alternating courses; by way of example, yarn A (undyed) is used for course 1, yarn B (dyed) is used for course 2, yarn A is used for course 3, yarn B for course 4, etc. Either yarn A or yarn B has a low shrinkability, with the other yarn then having a high shrinkability.
Abstract:
A method of constructing a double face fabric is provided. The first step in the method is to knit a three dimensional knit fabric which has a first fabric layer, a second fabric layer and a plurality of yarns that interconnect the two layers. The three dimensional knit fabric is prepared using a conventional double needle bar warp knitting machine. Then, the yarn connecting the two layers is cut, resulting in two pieces of fabric having a velvet surface on one side, and a flat knit surface on the other. The flat knit surface is then raised by a process such as napping to pull portions of the pile yarns through the fabric layer to the technical back, in order to form a pair of double face fabrics, each with a first velvet surface and a second fleece surface. Preferably, the fabric is knit so that after napping it can be stretched. In this manner a wide variety of fabrics can be created.
Abstract:
A stretchable, drapable, windproof, water resistant and water vapor permeable composite fabric including an inner layer of fabric, a polyurethane barrier and an outer layer of fabric. The barrier is constructed to allow water vapor molecules to travel therethrough, but restricts the passage of wind and liquid water. The water vapor is transported to and travels through the barrier to the outer fabric layer where it is removed to the environment.
Abstract:
A double-face velour fabric article consists of a fabric body having a technical face formed by a filament stitch yarn and a technical back formed by a filament loop yarn. The filament stitch yarn includes a heat sensitive material, e.g. a hot melt material or a heat shrinkable material, and/or an elastomeric material, such as spandex. The fabric body has a velour surface formed at both the technical back and the technical face. Raised fibers of at least one of the technical face and the technical back may be entangled, including in and/or through interstices of the fabric body, toward the other of the technical face and the technical back, e.g., by a hydroentanglement process applied after finishing. The fabric body has permeability of about 80 ft3/ft2/min, or less, under a pressure difference of ½ inch of water across the fabric body.
Abstract:
Covers for mattresses having a reclining surface of viscoelastic foam have a fabric body with a first surface disposed in engagement with the reclining surface; an opposite, second surface disposed for engagement by a person reclining upon the cover; and at least one air flow region defined by the fabric body for enhanced circulation of air between the reclining surface of viscoelastic foam and an opposed skin surface of the person reclining upon the cover. The circular knit fabric body comprises a flame retardant material.
Abstract:
A composite fabric garment includes a first garment portion disposed in one or more upper regions of the fabric garment, i.e. those regions relatively more likely in use to be exposed to wind and rain, and a second garment portion disposed in one or more lower regions of the fabric garment, i.e. those regions relatively less likely in use to be exposed to wind and rain. The first garment portion is formed of a first composite fabric having first inner and outer fabric layers and a first intermediate barrier layer disposed between and bonded to at least one of the first inner and outer fabric layers, the first intermediate barrier layer being breathable and substantially impermeable to wind and liquid water. The second garment portion is formed of a second composite fabric formed of second inner and outer fabric layers and having predetermined air permeability. In one embodiment, the second garment portion further includes a second intermediate, breathable, air-permeable barrier layer disposed between and bonded to at least one of the second inner and outer fabric layers. In another embodiment, the second garment portion is formed of a composite fabric having controlled air permeability in a non-laminate absent a barrier.