摘要:
The present invention features a high-capacity anode material for rapidly chargeable and dischargeable lithium secondary batteries, which is composed of Li4Ti5O12 nanoparticles. The Li4Ti5O12 nanoparticles of the present invention exhibit excellent crystallinity and high rate capability compared to those synthesized using a conventional polyol process or solid reaction process by converting Li4Ti5O12, which is a zero-strain insert material spotlighted as an anode active material for lithium secondary batteries, into Li4Ti5O12, having a high crystalline nanostructure using a solvothermal synthesis process without performing additional heat treatment. The present invention also features methods of, and a method of preparing the high-capacity anode materials described herein.
摘要翻译:本发明的特征在于用于快速充电和放电的锂二次电池的高容量负极材料,其由Li 4 Ti 5 O 12纳米颗粒组成。 本发明的Li 4 Ti 5 O 12纳米颗粒与使用常规多元醇工艺或固体反应方法合成的Li4Ti5O12纳米颗粒相比,其表现出优异的结晶度和高的速率能力,该Li4Ti5O12是作为锂二次电池的负极活性材料聚焦的零应变插入材料, 进入具有高结晶纳米结构的Li 4 Ti 5 O 12中,使用溶剂热合成方法,而不进行额外的热处理。 本发明还涉及制备本文所述的大容量阳极材料的方法和方法。
摘要:
is the present invention features a high-capacity anode material for rapidly chargeable and dischargeable lithium secondary batteries, which is composed of Li4Ti5O12 nanoparticles. The Li4Ti5O12 nanoparticles of the present invention exhibit excellent crystallinity and high rate capability compared to those synthesized using a conventional polyol process or solid reaction process by converting Li4Ti5O12, which is a zero-strain insert material spotlighted as an anode active material for lithium secondary batteries, into Li4Ti5O12, having a high crystalline nanostructure using a solvothermal synthesis process without performing additional heat treatment. The present invention also features methods of , and a method of preparing the high-capacity anode materials described herein.
摘要翻译:本发明的特征在于用于快速充电和放电的锂二次电池的高容量负极材料,其由Li 4 Ti 5 O 12纳米颗粒组成。 本发明的Li 4 Ti 5 O 12纳米粒子与使用常规的多元醇法或固相反应法合成的Li4Ti5O12纳米粒子相比,显示出优异的结晶性和高的倍率性能,其中Li 4 Ti 5 O 12是作为锂二次电池的负极活性物质聚焦的零应变插入材料, 进入具有高结晶纳米结构的Li 4 Ti 5 O 12中,使用溶剂热合成方法,而不进行额外的热处理。 本发明还涉及制备本文所述的大容量阳极材料的方法和方法。
摘要:
Provided are an optical waveguide master and a method of manufacturing the same, which has a 90° optical path change structure and an integrated optical waveguide with a 45° inclined reflection surface. The optical waveguide with the inclined reflection surface manufactured using the optical waveguide master facilitates coupling between the active optical electronic device and the waveguide, thereby perfectly overcoming difficulty in conventional mass production. The optical waveguide makes it possible to accomplish connection between various optical devices and optical circuits, and becomes source technology of an optical printed circuit board (PCB) and a system on package (SOP) in the future.
摘要:
Provided are a method and structure for optical connection between an optical transmitter and an optical receiver. The method includes the steps of: forming on a substrate a light source device, an optical detection device, an optical transmission unit electrically connected with the light source device, and an optical detection unit electrically connected with the optical detection device; preparing a flexible optical transmission-connection medium to optically connect the light source device with the optical detection device; cutting the prepared optical transmission-connection medium and surface-finishing it; and connecting one end of the surface-finished optical transmission-connection medium with the light source device and the other end with the optical detection device. Fabrication of an optical package having a 3-dimensional structure is facilitated and fabrication time is reduced, thus improving productivity. In addition, since the optical transmission-connection medium is directly connected with the light source device and the optical detection device, a polishing operation or additional connection block is not required, thus facilitating mass production.
摘要:
A three dimensional stack package device that can realize vertical electrical interconnection of the stacked individual package devices without a cost increase or additional complicated processing steps. The three dimensional package device includes a plurality of individual semiconductor devices, each individual semiconductor device including (1) a semiconductor chip, (2) a protective body for encapsulating the semiconductor chip, (3) a lead frame comprising inner lead portions electrically interconnected to the semiconductor chip and included within the protective body, outer lead portions formed as a single body with the inner lead portions, and coupling lead portions located between the inner and outer lead portions and having a top surface exposed upward from the protective body, and (4) a plurality of vertical interconnection elements attached to a back surface of the coupling lead portions and exposed from the protective body in a direction opposing the exposed top surface of the coupling lead portions, whereby, an electrical interconnection of the plurality of individual semiconductor devices is accomplished by the coupling lead portions and the vertical interconnection elements, and electrical interconnection of the three dimensional stack package device to an external circuit device is accomplished by the outer lead portions of a lowermost semiconductor device.
摘要:
The present invention provides a positive electrode material for a lithium secondary battery comprising a compound represented by the following Formula 1: LiMn1-xMxP1-yAsyO4 [Formula 1] wherein 0
摘要:
Provided is a holographic display that realizes a high-resolution three-dimensional (3D) image as a spatial light modulation panel system having a fast response time and enabling the formation of high-density pixels is developed. The holographic display includes, a spatial light modulator using a polymer thin film or a dielectric thin film that enable the formation of high-density pixels and has a fast response time, a fine displacement panel system sequentially moving the spatial light modulator in synchronization with a hologram fringe signal, and an optical system including a coherent light source, a spatial light modulation panel system, and an optical element that are efficiently disposed. The holographic display has a feature that realizes a high-resolution 3D image in a scheme that integrates and displays an image while sequentially moving a spatial light modulator simply or overlaps a hologram fringe pattern.
摘要:
The present invention provides method for preparing a cross-linked ceramic-coated separator containing an ionic polymer, a ceramic-coated separator prepared by the method, and a lithium secondary battery using the same. According to preferred methods for preparing a cross-linked ceramic-coated separator, a coating material containing ceramic particles for improving thermal and mechanical characteristics, a functional inorganic compound for improving cycle characteristics and high rate characteristics of a battery, and an ionic polymer for bonding the ceramic particles and the functional inorganic compound on a porous membrane substrate is coated on the porous membrane substrate and subjected to chemical cross-linking.
摘要:
Provided is an optical connection apparatus for a parallel optical interconnect module and a parallel optical interconnect module using the same for reducing a coupling loss generated due to an alignment error when coupled with an optical fiber, comprising: a 2D reflector in a prism shape and having at least two rows of cylinder type lens attached thereto; a 2D optical waveguide having at least two layers of core arrays; at least two rows of 2D optical benches; and a 2D ferrule capable of loading at least two layers of optical fibers so as to facilitate the fixing of the 2D optical waveguide for optical interconnection.
摘要:
A lead-on-chip semiconductor device package is formed by attaching a lead frame having a single adhesive layer to a semiconductor chip. Electrode pads of the chip are electrically connected by bonding wires and mechanically connected by the adhesive layer to the lead frame, and then encapsulated by an encapsulant such as molding compound. The adhesive layer is formed from a liquid adhesive having a certain viscosity. The adhesive material is continuously applied to spaces between adjacent inner leads as well as the top surface of the leads and then cured. The leads are disposed at the same intervals and include some side leads with a larger width in order to form the adhesive layer with a uniform thickness. Thermoplastic resins are preferably used as the adhesive, but thermosetting resins may be used as well. In the case of thermoplastic resins, the temperature of a cure step is about 200.degree. C. and that of chip attachment step is about 400.degree. C.