Abstract:
A security device that elicits at least one dynamic response upon acceleration, or upon change of orientation with respect to gravity, wherein the dynamic response continues after cessation of the acceleration or the change of orientation. In addition, the dynamic response can be optical, such that it is visually observable by an unaided human eye. Alternatively, the response can be machine readable. In some cases, the dynamic response has duration of from about 0.01 s to about 100 s, or from about Is to about 10 s.
Abstract:
A technique for separating components of a microfluid, comprises a self-intersecting micro or nano-fluidic channel defining a cyclic path for circulating the fluid over a receiving surface of a fluid component separating member; and equipment for applying coordinated pressure to the channel at a plurality of pressure control areas along the cyclic path to circulate the fluid over the receiving surface, applying a pressure to encourage a desired transmission through the separating member, and a circulating pressure to remove surface obstructions on the separating member. The equipment preferably defines a peristaltic pump. Turbulent microfluidic flow appears to be produced.
Abstract:
A centrifugal microfluidic device having a microfluidic mixing element with a microfluidic mixing chamber in which at least two flows emerging from channels into the chamber at separate places are redirected to land at substantially the same place on a mixing surface provides efficient mixing of two or more fluids in the chamber.
Abstract:
A composition made of at least 60 wt. % of a thermoplastic elastomer resin and additives that are solid at least from 0-50° C., that has a Shore A hardness that is less than about 50 bears a patterned surface, the pattern comprising at least one microfluidic channel having a cross-sectional dimension smaller than 100 microns is a substrate for forming a microfluidic device. The chief advantages of such compositions are: its ability to bond in a sealing manner to smooth surfaces of many different compositions, its ease of manufacture and microstructure patterning, and its general impermeability to liquids.
Abstract:
A plasmon resonance system, instrument, cartridge, and methods for analysis of analytes is disclosed. A PR system is provided that may include a DMF-LSPR cartridge that may support both digital microfluidic (DMF) capability and localized surface plasmon resonance (LSPR) capability for analysis of analytes. In some examples, the DMF portion of the DMF-LSPR cartridge may include an electrode arrangement for performing droplet operations, whereas the LSPR portion of the DMF-LSPR cartridge may include an LSPR sensor. In other examples, the LSPR portion of the DMF-LSPR cartridge may include an in-line reference channel, wherein the in-line reference channel may be a fluid channel including at least one functionalized LSPR sensor (or sample spot) and at least one non-functionalized LSPR sensor (or reference spot). Additionally, methods of using the PR system for analysis of analytes are provided.
Abstract:
A centrifugal microfluidic chip mounting, kit and method include a swivel joint permitting a chip to rotate about an axis of the chip in a plane swept by a centrifuge, and a force applicator for controlling an angle of the swivel and for applying a force in proportion to a rotational rate of the centrifuge. The mounting includes: a blade part (18) that couples to, or defines, a blade (10) of a centrifuge at a radial distance from a centrifuge axis (12); a chip part (20) that holds the chip at an orientation having a normal not perpendicular to the axis; a one degree of freedom (DoF) joint (16) between the blade part and the chip part; and a force applicator (28) which bears on the chip part at a fixed set of one or more points, which do not surround, and are not surrounded by, the joint.
Abstract:
A security device that exhibits at least one dynamic response upon change of orientation of the security device with respect to gravity, wherein the security device includes a hollow capsule completely filled with a liquid and one or more microscopic elements. In addition, the dynamic response continues after cessation of the change of orientation with respect to gravity. The dynamic response includes a transition of the one or more microscopic elements from substantial mechanical equilibrium to non-equilibrium upon action of the change of orientation with respect to gravity and back to substantial mechanical equilibrium after cessation of the change of orientation with respect to gravity. During the dynamic response, the one or more microscopic elements undergo at least one of a rotational motion and a translational motion relative to the liquid.
Abstract:
The present application relates to polymer film-metal composites, to methods of preparing polymer film-metal composites and to uses of such composites. The metal can be in the form of a nanoparticle or a film. The methods comprise depositing on a surface, a composition comprising: a cationic metal precursor; a polymer film precursor that comprises a plurality of photopolymerizable groups; and a photoreducer-photoinitiator; then irradiating the composition under conditions to simultaneously reduce the cationic metal and polymerize the photopolymerizable groups to obtain the composite on the surface.
Abstract:
The present application relates to polymer microparticle-metal nanoparticle composites, to methods of preparing polymer microparticle-metal nanoparticle composites and to uses of such composites. The methods comprise introducing into a microfluidic device, a composition comprising: a cationic metal nanoparticle precursor; a polymer microparticle precursor that comprises a plurality of photopolymerizable groups; and a photoreducer-photoinitiator; then irradiating the composition under conditions to simultaneously reduce the cationic metal and polymerize the photopolymerizable groups to obtain the composite.
Abstract:
A technique is provided for incorporating pneumatic control in centrifugal microfluidics. The technique involves providing a chip controller that has pressurized fluid supply lines for coupling one or more pressurized chambers of the controller with ports of a microfluidic chip. At least part of the chip controller is mounted to a centrifuge for rotation with the chip. A flow control device is provided in each supply line for selectively controlling the pressurized fluid supply, and is electrically controlled. Bubble mixing, on and off-chip valving, and switching are demonstrated.