Abstract:
A light emitting device has a lens, extended to outside of the mounting substrate on which a semiconductor a light emitting element is mounted, and leakage of light is reduced. A light emitting element, a substrate having the light emitting element mounted on its upper surface, and a lens, having a curved upper surface encloses the light emitting element and the upper surface of the substrate is included. From the bottom surface of the lens, a lower surface of the substrate is exposed. In a top view from a perpendicular direction to the upper surface of the substrate, the bottom surface of the lens includes an outer extending portion where the bottom surface is extended to outside of the substrate, and a inclined portion, which inclines with respect to a direction approximately in parallel to the upper surface of the substrate, at an end portion of the outer extending portion.
Abstract:
A light emitting device has; a light emitting element, a light reflecting member that is disposed so as to cover the lateral surfaces of the light emitting element and expose a top surface of the light emitting element, a frame that is disposed on the light reflecting member so as to surround an outer periphery of the top surface of the light emitting element, a light transmissive member that is disposed inside the frame, and a sealing member that covers the light reflecting member, the frame and the light transmissive member, and that has a flange covering part of the frame.
Abstract:
The present invention relates to a semiconductor device, including: a substrate; a plurality of first semiconductor elements and a second semiconductor element arranged on a mount area of the substrate; an external electrode to supply electricity to the first and second semiconductor elements; and a frame of reflective material formed at a periphery of the mount area. Extensions of the first external electrodes are formed at the inner side of the plurality of wirings, and the first external electrodes are formed along the periphery of the mount area at the outer side of at least one of the second external electrodes or the wiring connected to the second external electrodes, and electrodes of the plurality of first semiconductor elements are electrically connected to the pair of first external electrodes by a bonding wire that bridges across at least one of the pair of the second external electrodes or the wiring electrically connected to the pair of second external electrodes with intervening a part of the frame therebetween.
Abstract:
A light-emitting device includes a plurality of light-emitting elements, a plurality of light-transmissive members, and a covering member. The light-emitting elements each has a light-extracting surface. The light-emitting elements each includes a layered structure including a semiconductor layer, and a plurality of electrodes connected to the layered structure. The light-transmissive members each has a lower surface facing the light-extracting surface of at least one of the light-emitting elements, and an upper surface opposite to the lower surface and having an area smaller than an area of the lower surface. The upper surface of each of the light transmissive members collectively constitutes a light-emitting part having an outermost periphery with a square shape or a circular shape. The covering member integrally covers lateral surfaces of the light-emitting elements and lateral surfaces of the light-transmissive members.
Abstract:
A method of manufacturing a semiconductor device includes disposing a substrate metal film on an upper surface of a substrate made of a metal; disposing a first element metal film on a lower surface of a first element; disposing a second element metal film on a lower surface of a second element; bonding the first element and the second element to the substrate so that an upper surface of the substrate metal film is in contact with a lower surface of the first element metal film and a lower surface of the second element metal film; oxidizing at least a portion of a region of the upper surface of the substrate metal film other than regions in contact with the first element metal film and the second element metal film; and disposing a wiring electrically connecting the first element and the second element, across and above the region oxidized.
Abstract:
A light-emitting device includes a base, a light-emitting element, and reflecting elements. The light-emitting element is mounted on the base. The reflecting elements are arranged around the light-emitting element to reflect light emitted by the light-emitting element. Each of the reflecting elements includes a core and a dielectric multilayer film. The dielectric multilayer film covers the core and has a thickness to reflect a wavelength of the light emitted by the light-emitting element.
Abstract:
A manufacturing method for a light emitting device can include providing a bonding layer over a base, and disposing a shim plate with an opening over the bonding layer. A light emitting body is disposed over the bonding layer exposed from the opening of the shim plate. A lens is formed by approaching a die having a concave portion at its surface, to the shim plate, covering an upper surface of the light emitting body and an upper surface of the shim plate with a lens formation material within the concave portion, and then hardening the lens formation material.
Abstract:
A semiconductor light emitting device that achieves miniaturization and high brightness is provided. The semiconductor light emitting device has a light extraction surface (6) parallel to a lamination direction of a semiconductor layer (2). The semiconductor light emitting device includes a light guide member (3) placed on the semiconductor layer (2) and having a sloped surface (7) with a side surface opposite to the light extraction surface (6) sloped to the light extraction surface and a light-reflecting member (4) placed on a surface of the light guide member including at least the sloped surface of the light guide member.
Abstract:
A semiconductor light emitting device that achieves miniaturization and high brightness is provided. The semiconductor light emitting device has a light extraction surface (6) parallel to a lamination direction of a semiconductor layer (2). The semiconductor light emitting device includes a light guide member (3) placed on the semiconductor layer (2) and having a sloped surface (7) with a side surface opposite to the light extraction surface (6) sloped to the light extraction surface and a light-reflecting member (4) placed on a surface of the light guide member including at least the sloped surface of the light guide member.