摘要:
A magnetoresistance device comprising at least two ferromagnetic layers separated by a non-magnetic layer, the coercive force of one of the ferromagnetic layers being enhanced by a coercive force enhancement layer of an antiferromagnetic material disposed adjacent to the one of the ferromagnetic layer thereby pinning magnetization inversion in the one of the ferromagnetic layer, the other ferromagnetic layer serving as a free ferromagnetic layer in which magnetization inversion is allowed, wherein the spin orientation in the coercive force enhancement layer is aligned in a multilayer fashion into a direction substantially parallel to the plane of the coercive force enhancement layer. A method of producing such a device is also disclosed.
摘要:
A thin magnetic element which comprises a coil pattern formed on at least one side of a substrate and a thin magnetic film formed on the coil pattern, wherein:said thin magnetic film is for++med to a thickness of 0.5 .mu.m or greater but 8 .mu.m or smaller;and at least one of the following conditions, that is, assuming that the thickness and width of a coil conductor constituting the coil pattern are t and a, respectively, an aspect ratio t/a of the coil conductor satisfies the following relationship: 0.035.ltoreq.t/a.ltoreq.0.35;and assuming that the width of the conductor constituting the coil pattern is a and the distance between the mutually adjacent coil conductors in the coil pattern is b, the following relationship: 0.2.ltoreq.a/(a+b) is satisfied.
摘要:
A magnetoresistance device comprising at least two ferromagnetic layers separated by a non-magnetic layer, the coercive force of one of the ferromagnetic layers being enhanced by a coercive force enhancement layer of an antiferromagnetic material disposed adjacent to the one of the ferromagnetic layer thereby pinning magnetization inversion in the one of the ferromagnetic layer, the other ferromagnetic layer serving as a free ferromagnetic layer in which magnetization inversion is allowed, wherein the spin orientation in the coercive force enhancement layer is aligned in a multilayer fashion into a direction substantially parallel to the plane of the coercive force enhancement layer. A method of producing such a device is also disclosed.
摘要:
The present invention aims to provide an excellent exchange coupling thin film consisting of a completely novel material other than FeMn or NiMn and having excellent corrosion resistance and high resistivity, and a magnetoresistive element and a magnetic head each of which include the exchange coupling thin film. The exchange coupling thin film includes an antiferromagnetic film mainly composed of a crystal phase of a body-centered cubic structure and containing Cr and element M where element M contains at least one element of the 3B group elements in the Periodic Table, or Al, Ga or In, and a ferromagnetic film containing at least one of Fe, Ne, and Co, both films being laminated in contact with each other, wherein magnetic exchange coupling is generated in the interface between the antiferromagnetic film and the ferromagnetic film.
摘要:
An underlying layer is composed of Co—Fe—B that is an amorphous magnetic material. Thus, the upper surface of the underlying layer can be taken as a lower shield layer-side reference position for obtaining a gap length (GL) between upper and lower shields, resulting in a narrower gap than before. In addition, since the underlying layer has an amorphous structure, the underlying layer does not adversely affect the crystalline orientation of individual layers to be formed thereon, and the surface of the underlying layer has good planarizability. Accordingly, PW50 (half-amplitude pulse width) and SN ratio can be improved more than before without causing a decrease in rate of change in resistance (Δ R/R) or the like, thereby achieving a structure suitable for increasing recording density.
摘要翻译:下层由作为非晶磁性材料的Co-Fe-B组成。 因此,可以将下层的上表面作为下屏蔽层侧参考位置,以获得上屏蔽和下屏蔽之间的间隙长度(GL),导致与之前的间隙较窄。 此外,由于底层具有非晶结构,所以下层不会对要在其上形成的各层的结晶取向产生不利影响,并且下层的表面具有良好的平坦化性。 因此,PW50(半幅度脉冲宽度)和SN比可以比以前更多地改善,而不会导致电阻变化率(&Dgr; R / R)等的降低,从而实现适于提高记录密度的结构。
摘要:
In a tunneling magnetoresistive element, an insulating barrier layer is made of Mg—O, and a first pinned magnetic layer has a laminated structure in which a nonmagnetic metal sublayer made of Ta is interposed between a lower ferromagnetic sublayer and an upper ferromagnetic sublayer. The nonmagnetic metal sublayer has an average thickness of about 1 Å or more and about 5 Å or less.
摘要:
A tunneling magnetic sensing element including an Mg—O insulating barrier which can maintain favorable soft-magnetic properties of a free magnetic layer and can have a high resistance change ratio (ΔR/R) compared to known tunnel magnetic sensing elements is disclosed, and a method of manufacturing such a tunneling magnetic sensing element is also disclosed. An enhance layer (second magnetic layer) composed of Co100-XFeX having a Fe composition ratio X of about 30 to 100 at % is disposed on the Mg—O insulating barrier. With this, the magnetostriction λ of the free magnetic layer can be reduced and the resistance change ratio (ΔR/R) can be increased.
摘要翻译:公开了一种隧道式磁感应元件,其包括能够保持自由磁性层的有利的软磁性能并且与已知的隧道磁传感元件相比可以具有高电阻变化率(&Dgr; R / R)的Mg-O绝缘屏障, 并且还公开了制造这种隧道磁传感元件的方法。 在Mg-O绝缘屏障上设置由Fe组成比X为约30〜100原子%的Co100-XFeX构成的增强层(第二磁性层)。 由此,可以减小自由磁层的磁致伸缩λ,并且可以增加电阻变化率(&Dgr; R / R)。
摘要:
A magnetic sensing element is provided. A free magnetic layer has a three-layer structure including CoMnα sublayers each composed of a metal compound represented by the formula: Co2xMnxαy. The α contains an element β and Sb, the element β being at least one element selected from Ge, Ga, In, Si, Pb, Zn, Sn, and Al. The concentration x and the concentration y are each represented in terms of atomic percent and satisfy the equation: 3x+y=100 atomic percent. One of the CoMnα sublayers is in contact with a lower nonmagnetic material layer. The other CoMnα sublayer is in contact with upper nonmagnetic material layer. As a result, it is possible to achieve a high ΔRA and a lower interlayer coupling magnetic field Hin compared with the known art.
摘要:
A free magnetic layer of a tunnel-effect type magnetic sensor is formed on an insulating barrier layer made of Mg—O, and the free magnetic layer includes an enhancement layer, a first soft magnetic layer, a non-magnetic metal layer, and a second soft magnetic layer, which are laminated in that order from the bottom. For example, the enhancement layer is formed of Co—Fe, the first and the second soft magnetic layers are formed of Ni—Fe, and the non-magnetic metal layer is formed of Ta. The average thickness of the first soft magnetic layer is formed in the range of 5 to 60 Å. Accordingly, a high resistance change rate (ΔR/R) can be obtained.
摘要:
A magnetic sensor comprising: a multilayer film which has a pinned magnetic layer, the magnetization thereof being pinned in one direction, and a free magnetic layer formed on the pinned magnetic layer with a nonmagnetic material layer provided therebetween, in which current is allowed to flow in a direction perpendicular to the surfaces of the layers forming the multilayer film, wherein the pinned magnetic layer has a NiaFeb alloy layer (where a and b each indicate atomic percent, and 0