Abstract:
An endoscope system includes an endoscope including a control section, an insertion section, and a light guide member, a light source configured to emit light guided by the light guide member, a failure-cause detecting circuit configured to detect a pre-failure state that causes a failure of the endoscope, and a light source controller configured to control an output of the light source based on a detection result of the failure-cause detecting circuit. The failure-cause detecting circuit includes a cause predicting circuit configured to detect a second pre-failure state in which it is predicted that the endoscope reaches a first pre-failure state that directly causes the failure of the endoscope. The light source controller controls the output of the light source based on a detection result of the cause predicting circuit.
Abstract:
A light source apparatus includes an optical fiber that guides light source light emitted from a light source, and a light detection section that detects a quantity of the light source light guided by the optical fiber. The light detection section includes a light detector that outputs a signal indicating a quantity of incoming light, a light extraction section that is provided at a part of the optical fiber and extracts a part of light source light guided by the optical fiber as detected light, and a detected light optimization section that changes the detected light extracted from the optical fiber by the light extraction section into light having a light characteristic appropriate for detection of a quantity of light by the light detector.
Abstract:
A light source apparatus includes at least one light-emitter, a driving circuit, an input unit, a temperature control circuit, and an effective light power setting circuit. The driving circuit allows the light-emitter to emit light by applying a driving waveform to the light-emitter. The effective light power setting circuit drives the driving circuit to allow the light-emitter to emit light with a predetermined effective light power, in accordance with a driving condition set by the temperature control circuit. The temperature control circuit controls the light-emitter to be in a predetermined heat generation state by increasing or decreasing a heat generation amount of the light-emitter without changing the predetermined effective light power of the light emitted from the light-emitter by adjusting the driving condition of the light-emitter.
Abstract:
A light source apparatus includes: a primary light source module including a primary light source configured to emit primary light; a light conversion module including a light conversion unit configured to convert optical properties of the primary light and to generate secondary light; a light guide path, arranged between the primary light source module and the light conversion module, configured to guide the primary light to the light conversion module from the primary light source module; a first connecting portion configured to connect detachably the light conversion module with the light guide path; and a second connecting portion configured to connect detachably the primary light source module with the light guide path.
Abstract:
A light source device includes a light source unit configured to emit primary light and an illumination unit configured to optically convert the primary light to secondary light and then emit the secondary light. The light source device further includes a connector configured to allow the light source unit and the illumination unit to be attached to and detached from each other. Furthermore, the light source device includes an information transmitter configured to transmit illumination unit information to the light source unit, the illumination unit information being information regarding the illumination unit.
Abstract:
An endoscopic system is a system which an insertion portion of an endoscope is inserted from an insertion opening of an object to observe an inner surface of the object. The endoscopic system includes an electromagnetic radiation unit configured to radiate electromagnetic waves, a detection section configured to detect the electromagnetic waves, and a determination section configured to determine whether the insertion portion is present in the object based on a detection result of the detection section. One of the electromagnetic radiation unit and the detection section is arranged outside the object, and the other is arranged at the insertion portion.
Abstract:
A light source device includes a plurality of light emitters, an optical system configured to combine light from the light emitters, a wavelength selective filter located on an optical path of the optical system, and an optical sensor configured to receive light from one light emitter among the light emitters through an optical filter. The optical filter has a wavelength selection characteristic corresponding to a wavelength selection characteristic of the wavelength selective filter.
Abstract:
An illumination apparatus in an endoscopic system includes a light source unit having lasers with different peak wavelengths, the lasers being divided by peak wavelength into narrow band light source groups, a color imaging unit that detects the illumination color of illumination light, a memory that stores an appropriate illumination color for each narrow band light source group, an output calculator that, for each narrow band light source group, compares the illumination color obtained upon light emission by the lasers belonging to the narrow band light source group with the appropriate illumination color of the narrow band light source group and calculates an appropriate output for each of the lasers belonging to the narrow band light source group, and a light source controller that controls the lasers on the basis of the calculated appropriate output.
Abstract:
A light source illumination unit has operation modes including at least a normal electric power mode to operate with first electric power consumption, and a low electric power mode to operate with second electric power consumption lower than the first electric power consumption. A controller selects at least one of the operation modes in accordance with the current usage, and controls the light source illumination unit in accordance with the selected operation mode.
Abstract:
An illumination system includes a light source device configured by an excitation light source, a light guiding member and a wavelength converter that are connected in order, and an operation check device. The system further includes: a connector configured to directly and physically connect the operation check device to a light signal emitting end which includes the wavelength converter; a detector configured to detect a light signal emitted from the light signal emitting end when the light signal emitting end and the operation check device are connected by the connector; and an operation determiner configured to determine the operations of the excitation light source, the light guiding member, and the wavelength converter by a detection result in the detector.