Abstract:
An input receiver is provided with a pass transistor that is controlled to pass an input signal to an inverter only while a first binary state for the input signal equals a low voltage. The input receiver also includes a source follower transistor configured to pass a threshold-voltage-reduced version of the input signal while the first binary state of the input signal equals a high voltage greater than the low voltage.
Abstract:
Circuits and methods for loopback testing are provided. A die incorporates a receiver (RX) to each transmitter (TX) as well as a TX to each RX. This architecture is applied to each bit so, e.g., a die that transmits or receives 32 data bits during operation would have 32 transceivers (one for each bit). Focusing on one of the transceivers, a loopback architecture includes a TX data path and an RX data path that are coupled to each other through an external contact, such as a via at the transceiver. The die further includes a transmit clock tree feeding the TX data path and a receive clock tree feeding the RX data path. The transmit clock tree feeds the receive clock tree through a conductive clock node that is exposed on a surface of the die. Some systems further include a variable delay in the clock path.
Abstract:
A transmitter is disclosed with a pull-up feedback circuit and a feedback circuit. The transmitter includes an output driver for driving an output terminal.
Abstract:
A transmitter is disclosed with a pull-up feedback circuit and a feedback circuit. The transmitter includes an output driver for driving an output terminal.
Abstract:
A programmable equalizer and related method are provided. The equalizer includes a pair of current-setting field effect transistors (FETs) coupled in series with a pair of input FETs and a pair of load resistors, respectively, between a first voltage rail (Vdd) and a second voltage rail (ground). A programmable equalization circuit is coupled between the sources of the input FETs, comprising a plurality of selectable resistive paths and a variable capacitor, which could also be configured as a plurality of selectable capacitive paths. Each of the selectable resistive paths (as well as each of the selectable capacitive paths) include a selection FET for selectively coupling the corresponding resistive (or capacitive) path between the sources of the input FETs. In the case where one of the input FETs is biased with a reference gate voltage, the source of each selection FET is coupled to the source of such input FET.
Abstract:
In one embodiment, a system comprises a pre-driver circuit and a driver. The pre-driver circuit is powered by a first supply voltage, and configured to output a pre-drive signal. The driver comprises a pull-up NMOS transistor having a drain coupled to a second supply voltage, and a source coupled to an output of the driver, wherein the second supply voltage is lower than the first supply voltage by at least a threshold voltage of the pull-up NMOS transistor. The driver also comprises a drive circuit coupled to a gate of the pull-up NMOS transistor, wherein the drive circuit is configured to receive the pre-drive signal and to drive the gate of the pull-up NMOS transistor with a voltage approximately equal to the first supply voltage to drive the output of the driver to a high state depending on a logic state of the pre-drive signal.
Abstract:
Circuits for die-to-die clock distribution are provided. A system includes a transmit clock tree on a first die and a receive clock tree on a second die. The transmit clock tree and the receive clock tree are the same, or very nearly the same, so that the insertion delay for a given bit on the transmit clock tree is the same as an insertion delay for a bit corresponding to the given bit on the receive clock tree. While there may be clock skew from bit-to-bit within the same clock tree, corresponding bits on the different die experience the same clock insertion delays.