Abstract:
A single receive chain of a MIMO receiver is activated during a low power listen mode. Upon detecting a legacy short training field (L-STF) in a received packet, the single receive chain performs a first frequency estimation, and activates one or more additional receive chains of the MIMO receiver. The MIMO receiver uses maximal ratio combining (MRC) to receive the signal using the first receive chain and the one or more additional activated receive chains, wherein the MRC is based, at least in part, on the first frequency estimation. The MIMO receiver may determine whether the received packet is a high throughput/very high throughput (HT/VHT) packet, and if not, deactivate the one or more additional receive chains. In one alternative, the additional receive chains are not activated until determining that a HT/VHT packet has been received.
Abstract:
A single receive chain of a MIMO receiver is activated during a low power listen mode. Upon detecting a legacy short training field (L-STF) in a received packet, the single receive chain performs a first frequency estimation, and activates one or more additional receive chains of the MIMO receiver. The MIMO receiver uses maximal ratio combining (MRC) to receive the signal using the first receive chain and the one or more additional activated receive chains, wherein the MRC is based, at least in part, on the first frequency estimation. The MIMO receiver may determine whether the received packet is a high throughput/very high throughput (HT/VHT) packet, and if not, deactivate the one or more additional receive chains. In one alternative, the additional receive chains are not activated until determining that a HT/VHT packet has been received.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with reducing interference between NFC communications and other coexisting RAT based communications. In one example, a communications device may include an interface that is equipped to detect that a NFC communication and a coexisting RAT communication are to occur within a threshold time of each other, determine whether the communications will interfere with each other beyond a threshold level of interference, and align timing for the NFC communication and the RAT communication upon a determination that the communications will not interfere with each other beyond the threshold level of interference. In another example, a communications device may include an interface that is equipped to detect that a NFC subsystem has established a NFC connection, and provide a message to another RAT subsystem to establish a link or perform a handover.
Abstract:
Systems, methods, and devices for communicating with a second apparatus in a wireless communications network are described herein. In some aspects, a first wireless communication unit is configured to communicate with the second apparatus via a first wireless protocol. The first wireless communication unit may transmit a first message to the second apparatus. A second wireless communication unit is configured to communicate with the second apparatus over a communication link via a second wireless protocol. The second wireless communication unit may be further configured to disconnect the communication link if the first wireless communication unit does not receive a second message from the second apparatus within a predetermined amount of time after transmission of the first message.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with reducing interference between NFC communications and other coexisting RAT based communications. In one example, a communications device may include an interface that is equipped to detect that a NFC communication and a coexisting RAT communication are to occur within a threshold time of each other, determine whether the communications will interfere with each other beyond a threshold level of interference, and align timing for the NFC communication and the RAT communication upon a determination that the communications will not interfere with each other beyond the threshold level of interference. In another example, a communications device may include an interface that is equipped to detect that a NFC subsystem has established a NFC connection, and provide a message to another RAT subsystem to establish a link or perform a handover.
Abstract:
Systems and methods are provided for enhancing the concurrency of a wireless device operating in multiple network contexts. By identifying opportunity instants that may exist within the normal exchange of information by a device having a single physical transceiver in a first network context, tasks for a second network context may be performed using the transceiver with minimal impact on performance related to the first network context and preferably in complete transparence to the first network context.
Abstract:
A method of operating a receiver in a communications system is disclosed. The receiver receives a radio-frequency (RF) data signal and converts the RF data signal to an intermediate frequency. The receiver then determines whether a blocker image interferes with the received data signal, and selectively adjusts the intermediate frequency to which the data signal is converted based on the determination. The receiver may lower the intermediate frequency if the blocker image interferes with the received data signal. The receiver may also deactivate a quadrature chain of the receiver if the blocker image interferes with the received data signal.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.
Abstract:
Methods, devices, and apparatuses are described for wireless communications using a multidimensional algorithm for roaming. In one aspect, an initial set of candidate access points (APs) is produced by a station using a roaming scan. The initial set may be identified based at least in part on an initial metric (e.g., beacon signal strength). A probe signal may be transmitted by the station to at least one of the candidate APs in the initial set and information may be received in response to the probe signals. The station may then identify a reduced set from the initial set based at least in part on the received information, where the reduced set is used to select a target AP. At least one additional metric may be identified and the probe signal may be configured to obtain information corresponding to the additional metrics. This information may be used by the station to select the candidate APs in the reduced set.
Abstract:
In a multi-radio user equipment (UE) various techniques may be used to buffer communications for a first radio access technology (RAT). A low channel quality for a second RAT is reported. An indication to halt downlink communications of the second RAT based on the reported low channel quality is received. The buffered communications by the first RAT when the second RAT downlink communications are halted are transmitted. An indication to the second RAT is sent to resume normal channel quality reporting.