Abstract:
Methods and devices are described for wireless communications associated with a multidimensional algorithm for roaming. In one aspect, an access point (or like device) transmits a beacon signal. The access point receives, from a station in receipt of the beacon signal, a probe signal including at least one metric. The access point transmits a response signal based at least in part on the received probe signal, the response signal including information associated with the at least one metric.
Abstract:
Methods and devices are described for wireless communications associated with a multidimensional algorithm for roaming. In one aspect, an access point (or like device) transmits a beacon signal. The access point receives, from a station in receipt of the beacon signal, a probe signal including at least one metric. The access point transmits a response signal based at least in part on the received probe signal, the response signal including information associated with the at least one metric.
Abstract:
Methods, devices, and apparatuses are described for wireless communications using a multidimensional algorithm for roaming. In one aspect, an initial set of candidate access points (APs) is produced by a station using a roaming scan. The initial set may be identified based at least in part on an initial metric (e.g., beacon signal strength). A probe signal may be transmitted by the station to at least one of the candidate APs in the initial set and information may be received in response to the probe signals. The station may then identify a reduced set from the initial set based at least in part on the received information, where the reduced set is used to select a target AP. At least one additional metric may be identified and the probe signal may be configured to obtain information corresponding to the additional metrics. This information may be used by the station to select the candidate APs in the reduced set.
Abstract:
A user equipment (UE) uses information regarding dynamic resource allocation in a mobile wireless service (MWS) radio access technology (RAT) to improve MWS and wireless connectivity network (WCN) RAT coexistence. The UE may receive an indication of time and frequency resources of future activity of the MWS RAT. The UE may schedule communications of the WCN RAT based at least in part on the indication of the time and frequency resources of the future activity.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, and implementing lower power modes with various modes of the device. According to one aspect, the mode of the device may be a beacon monitoring mode or a delivery traffic indication message (DTIM) mode. In such a mode, the device may receive a portion of a beacon in a first power mode. The device may transition to a second, different (e.g., higher) power mode using information contained in the received portion of the beacon as guidance.
Abstract:
A user equipment (UE) uses information regarding the timing of scheduling mobile wireless services (MWS) RAT communications to improve MWS and wireless network connectivity (WCN) radio access technology coexistence. To allow sufficient time for an uplink grant to be received by the UE in advance of the scheduled uplink time, an uplink grant may be sent in advance of the scheduled uplink time. In some instances, the UE may receive an indication of scheduled uplink time of the MWS RAT via a physical layer communication. The UE may schedule communications of the WCN RAT based at least in part on the indication of future activity.
Abstract:
A method of operating a receiver in a communications system is disclosed. The receiver receives a radio-frequency (RF) data signal and converts the RF data signal to an intermediate frequency. The receiver then determines whether a blocker image interferes with the received data signal, and selectively adjusts the intermediate frequency to which the data signal is converted based on the determination. The receiver may lower the intermediate frequency if the blocker image interferes with the received data signal. The receiver may also deactivate a quadrature chain of the receiver if the blocker image interferes with the received data signal.
Abstract:
In a multi-radio user equipment (UE) various techniques may be used to buffer communications for a first radio access technology (RAT). A low channel quality for a second RAT is reported. An indication to halt downlink communications of the second RAT based on the reported low channel quality is received. The buffered communications by the first RAT when the second RAT downlink communications are halted are transmitted. An indication to the second RAT is sent to resume normal channel quality reporting.
Abstract:
A single receive chain of a MIMO receiver is activated during a low power listen mode. Upon detecting a legacy short training field (L-STF) in a received packet, the single receive chain performs a first frequency estimation, and activates one or more additional receive chains of the MIMO receiver. The MIMO receiver uses maximal ratio combining (MRC) to receive the signal using the first receive chain and the one or more additional activated receive chains, wherein the MRC is based, at least in part, on the first frequency estimation. The MIMO receiver may determine whether the received packet is a high throughput/very high throughput (HT/VHT) packet, and if not, deactivate the one or more additional receive chains. In one alternative, the additional receive chains are not activated until determining that a HT/VHT packet has been received.
Abstract:
Systems and methods are disclosed for operating an interface of an electronic device in an active mode or a power save mode based, at least in part, on a condition of a data exchange module buffer. When buffer space is available, incoming data may be stored locally and the interface used to access remote memory storage may be in a power save mode. The interface may revert to active mode to transfer data to the remote memory, such as after a configurable reception interval. Outgoing data may also be stored in a buffer, allowing the interface to be in a power save mode with information transmitted from the buffer.