Abstract:
A driver IC includes a ring-shaped termination area, and a first area and a second area that are respectively arranged outside and inside the termination area on a layout. A sense MOS that is arranged between a floating terminal and a first sense node and is driven at a power supply voltage is formed in the termination area. A fault detection circuit that detects presence of a fault when a voltage of the first sense node is higher than a decision voltage that has been determined in advance in a period of time that a low side driver is driving a low side transistor into an ON state is formed in the first area.
Abstract:
A method of controlling a power supply to a semiconductor device including a first region having a high-side drive circuit, a second region having a signal processing circuit, a low-side drive circuit and a voltage control circuit, and a separation region formed between the first and second regions and having a rectifying element, includes turning on a first control signal to the voltage control circuit, turning off the first control signal to the voltage control circuit, and repeating the turning on of the first control signal and the turning off the first control signal.
Abstract:
A semiconductor device including a first circuit region in which a first circuit whose power supply potential is a first voltage is formed; a second circuit region in which a second circuit whose power supply potential is a second voltage lower than the first voltage is formed a separation region which separates the first circuit region from the second circuit region; and a transistor which is located in the separation region and couples the second circuit to the first circuit and whose source and drain are of a first conductivity type, the separation region including an element separation film; a first field plate which overlaps with the element separation film in plan view; a plurality of conductive films which are provided over the first field plate.
Abstract:
A field plate electrode is repetitively disposed in a folded manner or a spiral shape in a direction along an edge of a first circuit region. A coupling transistor couples a first circuit to a second circuit lower in supply voltage than the first circuit. A second conductivity type region is disposed around the coupling transistor. A part of the field plate electrode partially overlaps with the second conductivity type region. The field plate electrode is electrically coupled to a drain electrode of the coupling transistor at a portion located on the first circuit region side from a center thereof in a width direction of the separation region. A ground potential or a power potential of the second circuit is applied to the field plate electrode at a portion located on the second conductivity type region side from the center.
Abstract:
Provided is a semiconductor device including a substrate of a first conductivity type, a first circuit region, a separation region, a second circuit region, and a rectifying element. The rectifying element has a second conductivity type layer, a first high concentration second conductivity type region, a second high concentration second conductivity type region, an element isolation film, a first insulation layer, and a first conductive film. A first contact is coupled to the first high concentration second conductivity type region, and a second contact is coupled to the second high concentration second conductivity type region. A third contact is coupled to the first conductive film. The first contact, the second contact and the third contact are separated from each other.