摘要:
By forming an additional stressed dielectric material after patterning dielectric liners of different intrinsic stress, a significant increase of performance in transistors may be obtained while substantially not contributing to patterning non-uniformities during the formation of respective contact openings in highly scaled semiconductor devices. The additional dielectric layer may be provided with any type of intrinsic stress, irrespective of the previously selected patterning sequence.
摘要:
By performing a plasma treatment for efficiently sealing the surface of a stressed dielectric layer containing silicon nitride, an enhanced performance during the patterning of contact openings may be achieved, since nitrogen-induced resist poisoning may be significantly reduced during the selective patterning of stressed layers of different types of intrinsic stress.
摘要:
In a replacement gate approach, the exposure of the placeholder material of the gate electrode structures may be accomplished on the basis of an etch process, thereby avoiding the introduction of process-related non-uniformities, which are typically associated with a complex polishing process for exposing the top surface of the placeholder material. In some illustrative embodiments, the placeholder material may be exposed by an etch process based on a sacrificial mask material.
摘要:
Apparatus for semiconductor device structures and related fabrication methods are provided. One method for fabricating a semiconductor device structure involves forming a layer of dielectric material overlying a doped region formed in a semiconductor substrate adjacent to a gate structure and forming a conductive contact in the layer of dielectric material. The conductive contact overlies and electrically connects to the doped region. The method continues by forming a second layer of dielectric material overlying the conductive contact, forming a voided region in the second layer overlying the conductive contact, forming a third layer of dielectric material overlying the voided region, and forming another voided region in the third layer overlying at least a portion of the voided region in the second layer. The method continues by forming a conductive material that fills both voided regions to contact the conductive contact.
摘要:
By forming an additional dielectric material, such as silicon nitride, after patterning dielectric liners of different intrinsic stress, a significant increase of performance of N-channel transistors may be obtained while substantially not contributing to a performance loss of the P-channel transistor.
摘要:
The present disclosure provides manufacturing techniques and semiconductor devices in which performance of P-channel transistors may be enhanced on the basis of a stress mechanism that involves the deposition of a dielectric bi-layer system. Contrary to conventional strategies, an additional pre-treatment may be performed prior to the deposition of an adhesion layer in a plasma-free process atmosphere, thereby enabling a reduced thickness of the adhesion layer and a higher internal stress level of the subsequent top layer.
摘要:
By locally adapting the size and/or density of a contact structure, for instance, within individual transistors or in a more global manner, the overall performance of advanced semiconductor devices may be increased. Hence, the mutual interaction between the contact structure and local device characteristics may be taken into consideration. On the other hand, a high degree of compatibility with conventional process strategies may be maintained.
摘要:
In a replacement gate approach for forming high-k metal gate electrode structures, electronic fuses may be provided on the basis of a semiconductor material in combination with a metal silicide by using a recessed surface topography and/or a superior selectivity of the metal silicide material during the replacement gate process. For example, in some illustrative embodiments, electronic fuses may be provided in a recessed portion of an isolation region, thereby avoiding the removal of the semiconductor material when replacing the semiconductor material of the gate electrode structures with a metal-containing electrode material. Consequently, the concept of well-established semiconductor-based electronic fuses may be applied together with sophisticated replacement gate structures of transistors.
摘要:
In sophisticated semiconductor devices, superior contact resistivity may be accomplished for a given contact configuration by providing hybrid contact elements, at least a portion of which may be comprised of a highly conductive material, such as copper. To this end, a well-established contact material, such as tungsten, may be used as buffer material in order to preserve integrity of sensitive device areas upon depositing the highly conductive metal.
摘要:
Memory cells in integrated circuit devices may be formed on the basis of functional molecules which may be positioned within via openings on the basis of appropriate patterning techniques, which may also be used for forming semiconductor-based integrated circuits. Consequently, memory cells may be formed on a “molecular” level without requiring extremely sophisticated patterning regimes, such as electron beam lithography and the like.