摘要:
By forming an additional stressed dielectric material after patterning dielectric liners of different intrinsic stress, a significant increase of performance in transistors may be obtained while substantially not contributing to patterning non-uniformities during the formation of respective contact openings in highly scaled semiconductor devices. The additional dielectric layer may be provided with any type of intrinsic stress, irrespective of the previously selected patterning sequence.
摘要:
By forming an additional stressed dielectric material after patterning dielectric liners of different intrinsic stress, a significant increase of performance in transistors may be obtained while substantially not contributing to patterning non-uniformities during the formation of respective contact openings in highly scaled semiconductor devices. The additional dielectric layer may be provided with any type of intrinsic stress, irrespective of the previously selected patterning sequence.
摘要:
By performing a plasma treatment for efficiently sealing the surface of a stressed dielectric layer containing silicon nitride, an enhanced performance during the patterning of contact openings may be achieved, since nitrogen-induced resist poisoning may be significantly reduced during the selective patterning of stressed layers of different types of intrinsic stress.
摘要:
By incorporating a material exhibiting a high adhesion on chamber walls of a process chamber during sputter etching, the defect rate in a patterning sequence on the basis of an ARC layer may be significantly reduced, since the adhesion material may be reliably exposed during a sputter preclean process. The corresponding adhesion layer may be positioned within the ARC layer stack so as to be reliably consumed, at least partially, while nevertheless providing the required optical characteristics. Hence, a low defect rate in combination with a high process efficiency may be achieved.
摘要:
By performing a plasma treatment for efficiently sealing the surface of a stressed dielectric layer containing silicon nitride, an enhanced performance during the patterning of contact openings may be achieved, since nitrogen-induced resist poisoning may be significantly reduced during the selective patterning of stressed layers of different types of intrinsic stress.
摘要:
By incorporating a material exhibiting a high adhesion on chamber walls of a process chamber during sputter etching, the defect rate in a patterning sequence on the basis of an ARC layer may be significantly reduced, since the adhesion material may be reliably exposed during a sputter preclean process. The corresponding adhesion layer may be positioned within the ARC layer stack so as to be reliably consumed, at least partially, while nevertheless providing the required optical characteristics. Hence, a low defect rate in combination with a high process efficiency may be achieved.
摘要:
In a replacement gate approach, the dielectric cap layers of the gate electrode structures are removed in a separate removal process, such as a plasma assisted etch process, in order to provide superior process conditions during the subsequent planarization of the interlayer dielectric material for exposing the sacrificial gate material. Due to the superior process conditions, the selective removal of the sacrificial gate material may be accomplished with enhanced uniformity, thereby also contributing to superior stability of transistor characteristics.
摘要:
In a replacement gate approach, the dielectric cap layers of the gate electrode structures are removed in a separate removal process, such as a plasma assisted etch process, in order to provide superior process conditions during the subsequent planarization of the interlayer dielectric material for exposing the sacrificial gate material. Due to the superior process conditions, the selective removal of the sacrificial gate material may be accomplished with enhanced uniformity, thereby also contributing to superior stability of transistor characteristics.
摘要:
When forming sophisticated semiconductor-based gate electrode structures of transistors, the pre-doping of one type of gate electrode structure may be accomplished after the actual patterning of the electrode material by using an appropriate mask or fill material for covering the active regions and using a lithography mask. In this manner, a high degree of flexibility is provided with respect to selecting an appropriate patterning regime, while at the same time a uniform and superior cross-sectional shape for any type of gate electrode structure is obtained.
摘要:
Mask defects, such as crystal growth defects and the like, may be efficiently detected and estimated at an early stage of their development by generating test images of the mask under consideration and inspecting the images on the basis of wafer inspection techniques in order to identify repeatedly occurring defects. In some illustrative embodiments, the exposure process for generating the mask images may be performed on the basis of different exposure parameters, such as exposure doses, in order to enhance the probability of detecting defects and also estimating the effect thereof depending on the varying exposure parameters. Consequently, increased reliability may be achieved compared to conventional direct mask inspection techniques.