摘要:
Titanium and aluminum cathode targets are disclosed for sputtering absorbing coatings of titanium and aluminum-containing materials in atmospheres comprising inert gas, reactive gases such as nitrogen, oxygen, and mixtures thereof, which can further comprise inert gas, such as argon, to form nitrides, oxides, and oxynitrides, as well as metallic films. The titanium and aluminum-containing coatings can be utilized as an outer coat or as one or more coating layers of a coating stack.
摘要:
The present invention is directed to a low emissivity, low shading coefficient, multi-layer coating and coated article having a luminous transmission of less than about 70 percent, a shading coefficient less than about 0.44 and a solar heat gain coefficient of less than about 0.38 and a ratio of luminous transmittance to solar heat gain coefficient of greater than about 1.85. The coated article, e.g. an IG unit, has a substrate with at least one antireflective layer deposited over the substrate. At least one infrared reflective layer is deposited over the antireflective layer and at least one primer layer is deposited over the infrared reflective layer. Optionally a second antireflective layer is deposited over the first primer layer and optionally a second infrared reflective layer is deposited over the second antireflective layer. Optionally a second primer layer is deposited over the second infrared reflective layer and optionally a third antireflective layer is deposited over the second primer layer, such that the coated article can have the aforementioned optical properties. Also an optional protective overcoat, e.g. an oxide or oxynitride of titanium or silicon, and/or solvent soluble organic film former may be deposited over the uppermost antireflective layer.
摘要:
A coated article includes a non-conductive substrate, such as glass. At least one conductive coating is formed over at least a portion of the substrate, such as by chemical vapor deposition or physical vapor deposition. The conductive coating can be a functional coating and can have a thickness in the range of greater than 0 Å to less than 25,000 Å, such as less than 10,000 Å. At least one polymeric coating is electrodeposited over at least a portion of the conductive coating.
摘要:
An article includes a first substrate, a functional coating deposited over at least a portion of the substrate, and a protective coating deposited over the functional coating. The functional coating and the protective coating define a coating stack. A polymeric material is deposited over at least a portion of the protective coating. The protective coating has a refractive index that is substantially the same as the refractive index of the polymeric material.
摘要:
A method and resultant product are disclosed wherein a metal film is deposited by sputtering a metal cathode target in an essentially nonreactive atmosphere comprising inert gas and a reactive gas, wherein the concentration of reactive gas is sufficiently low that the sputtering is accomplished in the metallic mode, i.e. the film is deposited as metal. The metal film of the present invention is harder than a metal film sputtered in an atmosphere consisting of only inert gas. The method and resultant product may further comprise thermal oxidation of the metal film, which proceeds more efficiently than oxidation of a metal film sputtered in an atmosphere consisting of only inert gas.
摘要:
The present invention is directed to a low emissivity, low shading coefficient, low reflectance multi-layer coating and coated article having a visible light transmittance of greater than about 50%, preferably greater than about 55%, a shading coefficient of less than about 0.33 and en exterior reflectance of less than about 30%. The coated article, e.g. an IG unit, has a substrate with a first antireflective layer deposited over the substrate. A first infrared reflective layer is deposited over the first antireflective layer and a first primer layer is deposited over the first infrared reflective layer. A second antireflective layer is deposited over the first primer layer and a second infrared reflective layer is deposited over the second antireflective layer. A second primer layer is deposited over the second infrared reflective layer and a third antireflective layer is deposited over the second primer layer, such that the coated article has a transmittance greater than about 55%, a shading coefficient of less than about 0.33 and a reflectance of less than about 30%. A protective overcoat, e.g. an oxide or oxynitride of titanium or silicon, and/or solvent soluble organic film former may be deposited over the third antireflective layer.
摘要:
A coating composition is disclosed. The coating composition includes an infrared reflective layer; a primer layer over the infrared reflective layer; a dielectric layer over the primer layer; and an absorbing layer, wherein the absorbing layer can be either under the infrared reflective layer or over the dielectric layer.
摘要:
An electrically heatable transparency has at least one substrate, a first bus bar spaced from a second bus bar, and a conductive coating formed over at least a portion of the substrate. The first and second bus bars are in electrical contact with the coating. At least one of the bus bars has an end region in electrical contact with the coating. The end region is tapered such that the coating is of substantially uniform thickness on the end region.
摘要:
Titanium and aluminum cathode targets are disclosed for sputtering absorbing coatings of titanium and aluminum-containing materials in atmospheres comprising inert gas, reactive gases such as nitrogen, oxygen, and mixtures thereof, which can further comprise inert gas, such as argon, to form nitrides, oxides, and oxynitrides, as well as metallic films. The titanium and aluminum-containing coatings can be utilized as an outer coat or as one or more coating layers of a coating stack.