Abstract:
A method for producing a microelectronic device, in particular a MEMS chip device, comprising at least one carrier substrate. At least one electrodynamic actuator made of a metal conductor formed at least largely of copper is applied to the carrier substrate in at least one method step. At least one piezoelectric actuator is applied to the carrier substrate in at least one further method step.
Abstract:
A crank spindle set-up for a vehicle. The set-up includes a crank spindle for receiving a force/torque from pedaling using crank arms attached to ends of the crank spindle; an output shaft for receiving a force and/or a torque from the crank spindle; a mechanical coupling having a tap between the ends of the crank spindle, for transmitting force/torque from the crank spindle to the output shaft; a first magnetic region on/in the output shaft for generating and outputting a first magnetic field that is a function of the state of mechanical stress of the output shaft; a second magnetic region on/in the crank spindle at an axial distance from the tap, for generating and outputting a second magnetic field that is a function of the state of mechanical stress of the crank spindle; and a sensor set-up for detecting a magnetic field outputted by the crank spindle set-up.
Abstract:
A micromechanical constituent includes an actuator designed to impart to a displaceable element a first displacement motion around a first rotation axis and a second displacement motion around a second rotation axis oriented tiltedly with respect to the first rotation axis, the actuator including a permanent magnet on a first spring element and a one second permanent magnet on a second spring element, where the first permanent magnet is excitable to perform a first translational motion tiltedly with respect to the first rotation axis and tiltedly with respect to the second rotation axis, and the second permanent magnet is excitable to perform a second translational motion directed oppositely to the first translational motion, causing the second displacement motion of the displaceable element around the second rotation axis.
Abstract:
An assembly body for micromirror chips that partly encloses an internal cavity, the assembly body including at two sides oriented away from one another, at least one respective partial outer wall that is fashioned transparent for a specified spectrum, and the assembly body having at least one first outer opening on which a first micromirror chip can be attached, and a second outer opening on which a second micromirror chip can be attached, in such a way that a light beam passing through the first partial outer wall is capable of being deflected by the first micromirror chip onto the second micromirror chip, and is capable of being deflected by the second micromirror chip through the second partial outer wall. A mirror device and a production method for a mirror device are also described.
Abstract:
A mirror system including a mirror that is mounted in a manner that permits oscillation, having a coil and at least one first spring that intercouples the mirror and the coil in a way that allows the coil to be placed as a counterweight to the oscillating mirror. Also a corresponding projection device.
Abstract:
A micromechanical component. The micromechanical component includes: a mount; a displaceable part; and a first serpentine spring and a second serpentine spring which is embodied mirror-symmetrically with respect to the first serpentine spring in terms of a first plane of symmetry; a first actuator device and a second actuator device being embodied in such a way that by way of the first actuator device and the second actuator device, periodic deformations, mirror-symmetrical in terms of the first plane of symmetry, of the first serpentine spring and of the second serpentine spring are excitable; the micromechanical component also encompassing a first torsion spring and a second torsion spring that each extend along a rotation axis; and the displaceable part being displaceable, at least by way of the periodic and mirror-symmetrical deformations of the first serpentine spring and of the second serpentine spring, around the rotation axis with respect to the mount.
Abstract:
A device and method for producing a semiconductor component. The method includes: arranging a dielectric layer between a first electrode and a second electrode of the semiconductor component, there being defects of a first defect type in the dielectric layer; determining a time period for movement of defects of the first defect type into a target position in the dielectric layer; determining a first voltage for the movement of said defects in the dielectric layer; applying the first voltage between the first electrode and the second electrode in the time period.
Abstract:
A MEMS device and a corresponding operating method. The MEMS device is equipped with an oscillatory micromechanical system, which is excitable in a plurality of useful modes, the oscillatory micromechanical system including at least one system component, which is excitable in at least one parasitic spurious mode by a superposition of the useful modes. An adjusting device is provided, which is configured in such a way that it counteracts the parasitic spurious mode by application of an electromagnetic interaction to the system component.
Abstract:
A micromirror device, including a substrate and an outer frame element, which is connected to the substrate along a first oscillating axis with the aid of a first suspension device, and is deflectable about the first oscillating axis. In addition, the micromirror device includes an inner frame element, which is connected to the outer frame element along the first oscillating axis with the aid of a second suspension device; as well as an oscillating plate, which includes a micromirror and is connected to the inner frame element along a second oscillating axis, with the aid of a third suspension device; the first oscillating axis being perpendicular to the second oscillating axis. The inner frame element includes displaceable deflection elements, the oscillating plate being deflectable by displacing the deflection elements relative to the outer frame element.
Abstract:
A micromechanical component includes an adjustable part, a mounting, at least one bending actuator, and a permanent magnet. The part is positioned on the mounting so as to be adjustable relative to the mounting about a first rotation axis and about a second rotation axis inclined relative to the first axis. The actuator includes at least one movable subregion. Movement of the subregion results in a restoring force that moves the part about the first axis. The part is connected indirectly to the magnet to be adjustable about the second axis of rotation via a magnetic field built up by the magnet together with a yoke device of the component or an external yoke. A micromirror device includes the micromechanical component. A method for adjusting the part includes adjusting the part simultaneously about the first and the second axes.