摘要:
The present invention provides methods for optimizing oligonucleotide hybridization probes for use in basic and clinical research. Specifically, the invention involves hybridizing serially diluted genomic sample to the oligonucleotide probes on the array, such that a signal intensity is produced for each of the probes; computationally identifying optimized probes which exhibit signal intensities that correspond to the serial dilutions of genomic sample and are reproducibly strong relative to non-optimized probes.
摘要:
The present invention provides novel method for increasing the efficiency and accuracy of high-throughput mutation mapping and genome resequencing by using a variable length probe selection algorithm to rationally select probes used in designing oligonucleotide arrays synthesized by Maskless Array Synthesis (MAS) technology. Also disclosed is a variable length probe selection algorithm used in designing such oligonucleotide arrays.
摘要:
The present invention provides an apparatus and a method for the synthesis of arrays of oligomers that have tight illumination intensity requirement. The apparatus and the method contains a mechanism to correct for illumination nonuniformity during the oligomer array synthesis process. To correct for illumination nonuniformity, the illumination intensity of different oligomer synthesis positions across an area in which oligomers are synthesized are determined first. Then, the difference in illumination intensity among the positions are evaluated mathematically. Next, any nonuniformity in illumination intensity is corrected by either reducing the intensity of the light for the brighter positions before the light reaches the illumination area or reducing the illumination time of the brighter positions during one protection group deprotection period.
摘要:
The present invention provides novel methods for reducing the complexity of preferably a genomic sample for further analysis such as direct DNA sequencing, resequencing or SNP calling. The methods use pre-selected immobilized oligonucleotide probes to capture target nucleic acid molecules from a sample containing denatured, fragmented (genomic) nucleic acids for reducing the genetic complexity of the original population of nucleic acid molecules.
摘要:
During the light illumination period of a monomer addition cycle in synthesizing an DNA microarray, undesirable reflections of illumination light from various interfaces that the illumination light passes through near the synthesis surface of the substrate may reduce the light-dark contrast, and negatively affect the precision and resolution of the microarray synthesis. The present invention provides an flow cell that reduces the undesired reflections by constructing certain flow cell structures with materials that have similar refractive indexes as that of the solution that is in the oligomer synthesis chamber during the illumination period and/or constructing certain flow cell structures or covering the structures with a layer of a material that has a high extinction coefficient.
摘要:
The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing reflective projection optics. The projection optics project a light image onto the active surface of the substrate to deprotect linker molecules thereon. A first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different light image, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto.
摘要:
The present invention provides methods for optimizing oligonucleotide hybridization probes for use in basic and clinical research. Specifically, the invention involves hybridizing serially diluted genomic sample to the oligonucleotide probes on the array, such that a signal intensity is produced for each of the probes; computationally identifying optimized probes which exhibit signal intensities that correspond to the serial dilutions of genomic sample and are reproducibly strong relative to non-optimized probes.
摘要:
The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing reflective projection optics. The projection optics project a light image onto the active surface of the substrate to deprotect linker molecules thereon. A first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different light image, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto.
摘要:
The present invention provides novel methods for reducing the complexity of preferably a genomic sample for further analysis such as direct DNA sequencing, resequencing or SNP calling. The methods use pre-selected immobilized oligonucleotide probes to capture target nucleic acid molecules from a sample containing denatured, fragmented (genomic) nucleic acids for reducing the genetic complexity of the original population of nucleic acid molecules.
摘要:
The present invention provides methods for optimizing oligonucleotide hybridization probes for use in basic and clinical research. Specifically, the invention involves hybridizing serially diluted genomic sample to the oligonucleotide probes on the array, such that a signal intensity is produced for each of the probes; computationally identifying optimized probes which exhibit signal intensities that correspond to the serial dilutions of genomic sample and are reproducibly strong relative to non-optimized probes.