Abstract:
To display a high-quality video regardless of a usage environment. To provide a display device which is lightweight and less likely to be broken. To reduce power consumption of the display device. The display device includes a first display element, a first transistor connected to the first display element, a second display element, and a second transistor connected to the second display element. The first display element is a reflective display element. The first display element and the first transistor are bonded to the second display element and the second transistor with an adhesive layer. Light from the second display element is extracted to the display surface on the first display element side. The light is condensed or guided by a light-condensing means or a light-guiding means provided in a path of the light from the second display element to the display surface.
Abstract:
A novel film formation apparatus is provided. A novel film formation method and cleaning method is also provided. Further, a novel shadow mask is provided. The inventors have conceived a structure including a film formation chamber and an adhesive layer that is on the inner wall of the film formation chamber and/or on the shadow mask and to which a film formation material is to be attached.
Abstract:
It is an object to provide a method of manufacturing a crystalline silicon device and a semiconductor device in which formation of cracks in a substrate, a base protective film, and a crystalline silicon film can be suppressed. First, a layer including a semiconductor film is formed over a substrate, and is heated. A thermal expansion coefficient of the substrate is 6×10−7/° C. to 38×10−7/° C., preferably 6×10−7/° C. to 31.8×10−7/° C. Next, the layer including the semiconductor film is irradiated with a laser beam to crystallize the semiconductor film so as to form a crystalline semiconductor film. Total stress of the layer including the semiconductor film is −500 N/m to +50 N/m, preferably −150 N/m to 0 N/m after the heating step.
Abstract:
Provided are a transistor with favorable electrical characteristics, a transistor with a high on-state current, a transistor with low parasitic capacitance, or a transistor, a semiconductor device, or a memory device which can be miniaturized or highly integrated. An oxide semiconductor layer included in the transistor, the semiconductor device, or the memory device includes a first region, a second region over the first region, and a third region over the second region. The first region is located in a range from a surface on which the oxide semiconductor layer is to be formed to greater than or equal to 0 nm to less than or equal to 3 nm in a direction substantially perpendicular to the surface. In cross-sectional observation of the oxide semiconductor layer using a transmission electron 10 microscope, bright spots arranged in a layered manner in a direction parallel to the surface are observed in each of the first region, the second region, and the third region.
Abstract:
A semiconductor device that can be miniaturized or highly integrated is provided. A first conductor is formed over a substrate, a ferroelectric layer is formed over the first conductor, a second conductor is formed over the ferroelectric layer while substrate heating is performed, the ferroelectric layer includes hafnium oxide and zirconium oxide, and heat treatment at 500° C. or higher is not performed after the formation of the second conductor.
Abstract:
A novel display panel that is highly convenient, useful, or reliable is provided. The display panel includes a display region and includes a first pixel, a second pixel, a third pixel, and a filter. The first pixel emits light with a spectrum having a local maximum at a first wavelength, the second pixel emits light with a spectrum having a local maximum at a second wavelength, and the third pixel emits light with a spectrum having a local maximum at a third wavelength. The filter includes a region overlapping with the first pixel, a region overlapping with the second pixel, and a region overlapping with the third pixel, and the filter has a transmittance spectrum having local minimums at a fourth wavelength and a fifth wavelength. The second wavelength is longer than the first wavelength. The third wavelength is longer than the second wavelength. The fourth wavelength is between the first wavelength and the second wavelength. The fifth wavelength is between the second wavelength and the third wavelength.
Abstract:
A light extraction efficiency is increased in a display device having a plurality of display elements. The display device includes a first display element and a second display element over the first display element, and the first display element has a convex-concave shape. The convex-concave shape overlaps with a first opening provided in a reflective electrode of the second display element. A user can see an image that combines the display from the first display element and the display from the second display element. The convex-concave shape increases the light extraction efficiency of the first display element. The second display element is electrically connected to a transistor through a second opening provided in any layer of the first display element. The second display element can be provided close to the first display element.