Abstract:
An integrated circuit includes an interconnection part with several metallization levels. An electrically activatable switching device within the interconnection part has an assembly that includes a beam held by a structure. The beam and structure are located within the same metallization level. Locations of fixing of the structure on the beam are arranged so as to define for the beam a pivot point situated between these fixing locations. The structure is substantially symmetric with respect to the beam and to a plane perpendicular to the beam in the absence of a potential difference. The beam is able to pivot in a first direction in the presence of a first potential difference applied between a first part of the structure and to pivot in a second direction in the presence of a second potential difference applied between a second part of the structure.
Abstract:
An integrated thermoelectric generator includes a semiconductor. A set of thermocouples are electrically connected in series and thermally connected in parallel. The set of thermocouples include parallel semiconductor regions. Each semiconductor region has one type of conductivity from among two opposite types of conductivity. The semiconductor regions are electrically connected in series so as to form a chain of regions having, alternatingly, one and the other of the two types of conductivity.
Abstract:
An integrated circuit includes a substrate. A fixed main capacitor electrode is disposed in a metal layer overlying the substrate. A second main capacitor electrode is disposed in a metal layer and spaced from the fixed main capacitor electrode. A movable capacitor electrode is disposed adjacent the fixed main capacitor electrode. The movable capacitor electrode is switchable between a first configuration in which the movable capacitor electrode and fixed main capacitor electrode are mutually spaced out in such a manner as to form an auxiliary capacitor electrically connected to the main capacitor. In a second configuration, the movable capacitor electrode and the fixed main capacitor electrode are in electrical contact in such a manner as to give a second capacitive value.
Abstract:
An integrated circuit includes several metallization levels separated by an insulating region. A hollow housing whose walls comprise metallic portions is produced within various metallization levels. A controllable capacitive device includes a suspended metallic structure situated in the hollow housing within a first metallization level including a first element fixed on two fixing zones of the housing and at least one second element extending in cantilever fashion from the first element and includes a first electrode of the capacitive device. A second electrode includes a first fixed body situated at a second metallization level adjacent to the first metallization level facing the first electrode. The first element is controllable in flexion from a control zone of this first element so as to modify the distance between the two electrodes.
Abstract:
An integrated circuit includes a substrate and a circuit component (such as a MOS device or resistance) disposed at least partially within an active region of the substrate limited by an insulating region. A capacitive structure including a first electrode (for connection to a first potential such as ground) and a second electrode (for connection to a second potential such as a supply voltage) is provided in connection with the insulating region. One of the first and second electrodes is situated at least in part within the insulating region. The capacitive structure is thus configured in order to allow a reduction in compressive stresses within the active region.
Abstract:
A thermally deformable assembly is formed in an integrated-circuit metallization level. The physical behavior of the metal forming the assembly brings the assembly into contact with a stop-forming body when subjected to a temperature change caused by a current flow. A natural rollback to the initial configuration in which the assembly is a certain distance away from the body is prevented. The state or configuration of the assembly is determined by a capacitive reader.
Abstract:
An integrated circuit comprising a mechanical device for electrical switching comprising a first assembly being thermally deformable and having a beam held at at least two different locations by at least two arms, the beam and the arms being metal and disposed within the same metallization level, and further comprising at least one electrically conducting body. The first assembly has a first configuration at a first temperature and a second configuration at a second temperature different from the first temperature. The beam is out of contact with the electrically conducting body in one configuration in contact with the body in the other configuration. The beam establishes or breaks an electrical link passing through the said at least one electrically conducting body and through the said beam in the different configurations.
Abstract:
An integrated circuit comprising a mechanical device for electrical switching comprising a first assembly being thermally deformable and having a beam held at at least two different locations by at least two arms, the beam and the arms being metal and disposed within the same metallization level, and further comprising at least one electrically conducting body. The first assembly has a first configuration at a first temperature and a second configuration at a second temperature different from the first temperature. The beam is out of contact with the electrically conducting body in one configuration in contact with the body in the other configuration. The beam establishes or breaks an electrical link passing through the said at least one electrically conducting body and through the said beam in the different configurations.
Abstract:
A method for manufacturing an integrated circuit includes forming in a substrate a measuring circuit sensitive to mechanical stresses and configured to supply a measurement signal representative of mechanical stresses exerted on the measuring circuit. The measuring circuit is positioned such that the measurement signal is also representative of mechanical stresses exerted on a functional circuit of the integrated circuit. A method of using the integrated circuit includes determining from the measurement signal the value of a parameter of the functional circuit predicted to mitigate an impact of the variation in mechanical stresses on the operation of the functional circuit, and supplying the functional circuit with the determined value of the parameter.
Abstract:
An integrated circuit includes active circuitry disposed at a surface of a semiconductor body and an interconnect region disposed above the semiconductor body. A thermoelectric material is disposed in an upper portion of the interconnect region away from the semiconductor body. The thermoelectric material is configured to deliver electrical energy when exposed to a temperature gradient. This material can be used, for example, in a method for detecting the repackaging of the integrated circuit after it has been originally packaged.