Abstract:
A flexible display apparatus is disclosed. In one aspect, the apparatus includes a flexible display panel including a first surface, a second surface facing the first surface, and a side surface that connects the first surface and the second surface. The apparatus also includes a passivation layer that is disposed on at least one of the first surface, the second surface, and the side surface of the display panel and includes a viscoelastic fluid and a vessel unit that contains the viscoelastic fluid therein.
Abstract:
A flexible touch screen panel includes a substrate having flexibility, sensing electrodes on at least one surface of the substrate, and implemented using an opaque conductive metal, and a polarizing plate on the substrate having the sensing electrodes formed thereon. The sensing electrodes may be implemented in a mesh shape having a plurality of openings.
Abstract:
In a flexible touch screen panel, sensing patterns as a touch sensor are formed on the first surface of a flexible thin film substrate and a coated polarizer layer is formed on the second surface of the thin film substrate to secure the flexible characteristic, to reduce the thickness of the touch screen panel, and to improve the visibility of an image. Particularly, the flexible touch screen panel includes a flexible substrate comprising an active region and a non-active region positioned outside the active region, sensing patterns formed over the active region of a first surface of the substrate, conductive lines formed over the non-active region of the first surface of the substrate and connected to the sensing patterns, and a coated polarizer layer formed over a second surface of the substrate.
Abstract:
Disclosed is an acrylate based adhesive composition for optical use that includes: a copolymer prepared by polymerizing an alkyl (meth)acrylate (wherein the alkyl is a C16 to C22 linear alkyl group) in an amount of about 1 to about 10 parts by weight, an alkyl (meth)acrylate (wherein the alkyl is a C1 to C12 alkyl group) in an amount of about 70 to about 98 parts by weight, and a polar monomer in an amount of about 1 to about 20 parts by weight; and a cross-linking agent. The cross-linking agent is included in an amount of about 0.5 to 5 parts by weight based on 100 parts by weight of the copolymer.
Abstract:
A method of compensating an image based on light adaptation, a display device employing the same and an electronic device are disclosed. In one aspect, the method includes determining a degree of light adaptation based on an amount of long-wavelength light in an illumination environment where the image is displayed, converting image data in International Commission on Illumination (CIE) red-green-blue (RGB) color space to image data in CIE long-medium-short (LMS) color space for implementing the image via CIE-XYZ color space, applying the degree of light adaptation to the converted image data in the CIE-LMS color space so as to generate compensated image data, and converting the compensated image data in the CIE-LMS color space to image data to be displayed in the CIE-RGB color space via the CIE-XYZ color space.
Abstract:
A flexible display apparatus is disclosed. In one aspect, the apparatus includes a flexible display panel including a first surface, a second surface facing the first surface, and a side surface that connects the first surface and the second surface. The apparatus also includes a passivation layer that is disposed on at least one of the first surface, the second surface, and the side surface of the display panel and includes a viscoelastic fluid and a vessel unit that contains the viscoelastic fluid therein.
Abstract:
A method of display an image and a display device for performing the same are disclosed. In one aspect, the method includes receiving image data for a content image, determining a modulation region and a peripheral region in the content image and generating a left-eye content image and a right-eye content image based on the image data for the content image such that the modulation region has a three-dimensional depth. The method further includes displaying the left-eye content image and the right-eye content image and periodically changing the three-dimensional depth of the modulation region by changing a modulation distance between the modulation region in the left-eye content image and the modulation region in the right-eye content image based at least in part on a periodic modulation reference timing.
Abstract:
An electronic device includes a processor configured to control an operation of the electronic device, a memory device coupled to the processor, where the memory device is configured to operate as a main memory of the electronic device, and a display device coupled to the processor, where the display device is configured to display an original image based on first image data for the original image at a first frame, and to display a bioeffect image based on second image data for the bioeffect image at a second frame.
Abstract:
An organic light emitting display device includes a first substrate, a thin film transistor disposed on the first substrate, a first electrode electrically coupled to the thin film transistor, a pixel defining layer disposed on the first substrate and the first electrode to define unit pixels, a plurality of organic light emitting structure disposed on the first electrode, where in the organic light emitting structure includes a first organic light emitting structure, a second organic light emitting structure and a third light emitting structure, a second electrode which covers the first through third organic light emitting structures and the pixel defining layer; a metamaterial layer disposed on the second electrode corresponding to the organic light emitting structures, an encapsulation member which covers the second electrode and the metamaterial layer, and a second substrate disposed on the encapsulation member opposite to the first substrate.
Abstract:
A quantum dot light-emitting device and a display apparatus including the same, the device including a light-emitting device that emits a first light; a quantum dot layer facing the light-emitting device, the quantum dot layer including a plurality of quantum dots, absorbing the first light, and emitting a second light and a third light that have different wavelength ranges compared to the first light; and a band pass filter on the quantum dot layer, the band pass filter cutting off a portion of the second light and a portion of the third light.