Abstract:
An inspection apparatus and a method of inspecting a semiconductor device are disclosed. The inspection apparatus includes a stage on which a semiconductor device is positioned, a first light source irradiating a high-frequency light onto an inspection area of the semiconductor device to reduce a potential barrier of a PN junction in the semiconductor device, a beam scanner arranged over the semiconductor device and irradiating a charged particle beam onto the inspection area of the semiconductor device to generate secondary electrons, and a defect detector generating a detection image corresponding to the inspection area and detecting, based on a voltage contrast between a reference image and a plurality of detection images, a defect image indicating a defect in the semiconductor device from among the plurality of detection images.
Abstract:
A method of inspecting a substrate includes irradiating light onto a substrate that has experienced a first process, obtaining spectral data of the light reflected from the substrate, detecting a defect region of the substrate from the spectral data, and extracting a first defect site that occurred in or during the first process from the defect region. Extracting the first defect site includes establishing an effective area where the first process affects the substrate, and extracting a superimposed area that is overlapped with the effective area from the defect region. The superimposed area is defined as the first defect site.
Abstract:
A method of inspecting a semiconductor wafer is provided, the method includes scanning a plurality of inspection swaths on a wafer to obtain a plurality of image sets and producing a plurality of reference images from the plurality of image sets, respectively. The method of inspecting a semiconductor wafer further includes selecting a plurality of target images from the plurality of image sets, respectively. The method of inspecting a semiconductor wafer additionally includes comparing each reference image of the plurality of reference images with each target image of the plurality of target images to detect a defect image from each of the plurality of target images. A reference image being compared and a target image being compared are images scanned from the same inspection swath.
Abstract:
Disclosed are apparatuses and methods for measuring a thickness. The apparatus for measuring a thickness including a light source that emits a femto-second laser, an optical coupler through which a portion of the femto-second laser is incident onto a target and other portion of the femto-second laser is incident onto a reference mirror, a detector configured to receive a reflection signal reflected on the reference mirror and a sample signal generated from the target and configured to measure a thickness of the target based on an interference signal between the reflection signal and the sample signal, and a plurality of optical fiber lines configured to connect the light source, the optical coupler, and the detector to each other may be provided.
Abstract:
A method of inspecting a semiconductor wafer is provided, the method includes scanning a plurality of inspection swaths on a wafer to obtain a plurality of image sets and producing a plurality of reference images from the plurality of image sets, respectively. The method of inspecting a semiconductor wafer further includes selecting a plurality of target images from the plurality of image sets, respectively. The method of inspecting a semiconductor wafer additionally includes comparing each reference image of the plurality of reference images with each target image of the plurality of target images to detect a defect image from each of the plurality of target images. A reference image being compared and a target image being compared are images scanned from the same inspection swath.
Abstract:
A method of fabricating a package includes providing a mold substrate supporting dies in cavities of a fan-out substrate, detecting positions of the dies with respect to the fan-out substrate, and forming interconnection lines. At least one of the interconnection lines includes a first portion extending from the fan-out substrate to a target position on the cavity disposed between the fan-out substrate and one of the dies the one of the dies disposed at a detected position different from the target position, and a second portion extending from the one die to the fan-out substrate.
Abstract:
A method of inspecting a semiconductor device includes providing a substrate, on which a mold layer with a plurality of mold openings is provided, milling the mold layer in a direction inclined at a predetermined angle with respect to a direction normal to a top surface of the substrate, such that an inclined cutting surface exposing milled mold openings is formed, the milled mold openings including first milling openings along a first column extending in a first direction and having different heights, obtaining image data of the cutting surface, the image data including first contour images of the first milling openings, and obtaining a first process parameter, which represents an extent of bending of the mold openings according to a distance from a top surface of the substrate, using positions of center points of the first contour images.