Abstract:
A memory system includes a memory device having a plurality of volatile memory modules therein, and a memory controller, which is electrically coupled to the plurality of volatile memory modules. The memory controller is configured to correct an error in a first of the plurality of volatile memory modules in response to generation of an alert signal by the first of the plurality of volatile memory modules, concurrently with an operation to refresh at least a portion of a second of the plurality of volatile memory modules upon the generation of the alert signal.
Abstract:
A semiconductor memory device includes a memory cell array, sub word-line drivers and power selection switches. The memory cell array includes memory cell rows coupled to word lines. The sub word line drivers are coupled to the word lines. The power selection switches are coupled to the sub word-line drivers. Each power selection switch controls a deactivation voltage level of a first word-line activated from the word-lines and an off-voltage level of a second word line adjacent to the first word line so that the deactivation voltage level and the off-voltage level have at least one of a ground voltage, a first negative voltage and a second negative voltage. The ground voltage, the first negative voltage and the second negative voltage have different voltage levels from each other.
Abstract:
A memory module includes a memory device configured to receive a first refresh command from a host, and perform a refresh operation in response to the first refresh command during a refresh time, and a computing unit configured to detect the first refresh command provided from the host to the memory device, and write a first error pattern at a first address of the memory device during the refresh time.
Abstract:
Memory systems include a first semiconductor memory module and a processor. The processor is configured to access the first semiconductor memory module by units of a page, and further configured to respond to an occurrence of a page fault in a specific page, which is associated with a virtual address corresponding to an access target, by adjusting a number of pages and allocating pages in the first semiconductor memory module corresponding to the adjusted number of the pages, which are associated with the virtual address.
Abstract:
Memory systems include a first semiconductor memory module and a processor. The processor is configured to access the first semiconductor memory module by units of a page, and further configured to respond to an occurrence of a page fault in a specific page, which is associated with a virtual address corresponding to an access target, by adjusting a number of pages and allocating pages in the first semiconductor memory module corresponding to the adjusted number of the pages, which are associated with the virtual address.
Abstract:
A refresh leveraging driving method is provided which includes deciding a unit of word lines to be driven at a refresh leveraging operation to be the same as a redundancy repair row unit setting a lower row address of an input refresh leveraging address corresponding to the decided refresh leveraging row driving unit to a don't care state; and internally generating the don't care lower row address of the refresh leveraging address to drive word lines according to a combined refresh leveraging address.
Abstract:
A method for accessing a memory module includes; encoding first data of a first partial burst length to generate first parities and first cyclic redundancy codes, encoding second data of a second partial burst length to generate second parities and second cyclic redundancy codes, writing the first data and the second data to first memory devices, and writing the first parities, the first cyclic redundancy codes, the second parities, and the second cyclic redundancy codes to a second memory device and a third memory device.
Abstract:
A memory module includes a memory device configured to receive a first refresh command from a host, and perform a refresh operation in response to the first refresh command during a refresh time, and a computing unit configured to detect the first refresh command provided from the host to the memory device, and write a first error pattern at a first address of the memory device during the refresh time.
Abstract:
According to an exemplary embodiment, a memory device may include a memory cell array that includes memory cells connected to word lines arranged in sequential order depending on a sequential change of a row address, a row decoder that, for each row address input to the row decoder, scrambles a first bit of the row address and a second bit of the row address depending on a selection signal, thereby forming a scrambled row address, decodes the scrambled row address, and selects a word line from the word lines based on the scrambled row address, and an anti-fuse array that includes an anti-fuse in which a logical value of the selection signal is programmed. A first word line and a second word line of the word lines may be adjacent to each other, and a difference between a first value of the row address corresponding to the first word line and a second value of the row address corresponding to the second word line may be a value corresponding to the first bit.
Abstract:
A memory module includes a first type memory, a second type memory, a serial presence detect device and a controller. The serial presence detect device is configured to transfer capacity information of the second type memory to an external host device, during an initialization operation. The controller is configured to transfer a training command for the second type memory received from the external host device to the first type memory, during a training operation, which follows in time the initialization operation.