Abstract:
Provided are an electrostatic discharge (ESD) protection device having a high-resistance region and a method of forming the same. The device includes a well on a substrate. A first impurity region is formed on the well and connected to an input/output pad. A second impurity region is formed on the well, spaced apart from the first impurity region, and connected to a ground (Vss). A third impurity region is formed on the well, spaced apart from the first impurity region, and connected to the ground (Vss). An isolation layer is formed between the first impurity region and the second impurity region. A high-resistance region, which directly contacts the first impurity region and the well and has a resistance higher than the first impurity region, is formed between the first impurity region and the isolation layer. The well and the third impurity region include first conductive type impurities. The first impurity region and the second impurity region include second conductive type impurities different from the first conductive type impurities.
Abstract:
A semiconductor device includes a gate insulation layer pattern, a lower gate electrode, an upper gate electrode, and a first inner spacer. The gate insulation layer pattern is formed on a substrate. The lower gate electrode is formed on the gate insulation layer pattern. The upper gate electrode is formed on the lower gate electrode and has a width that gradually increases from a bottom portion toward a top portion thereof. The width of the bottom portion of the upper gate electrode is smaller than a width of a top surface of the lower gate electrode. The first inner spacer surrounds a sidewall of the upper gate electrode.
Abstract:
Semiconductor devices include a channel layer on a substrate, the channel layer including a material having a lattice constant different from a lattice constant of the substrate, a first gate electrode on the channel layer, a first source region of a first conductivity type at a first side of the first gate electrode, a first body region of a second conductivity type under the first source region and contacting the first source region, a first drain region of the first conductivity type disposed at a second side of the first gate electrode, a first drift region of the first conductivity type under the first drain region and contacting the first drain region, and a first stud region in the channel layer and the first drift region. The first stud region has an impurity concentration higher than an impurity concentration of the first drift region.
Abstract:
A semiconductor device including an electrostatic discharge (ESD) protection circuit includes an input port, a logic circuit receiving an input signal applied to the input port and generating an output signal based on the input signal, and an ESD protection circuit adjusting a level of the input signal when the level of the input signal exceeds a predetermined range. The ESD protection circuit includes a first fin and a second fin arranged on a semiconductor substrate in parallel, and a gate electrode formed in a direction crossing the first fin and the second fin, each of the first fin and the second fin includes a source region, a drain region, and a channel region disposed between the source region and the drain region, the channel region is disposed under the gate electrode, a source region of the first fin and a drain region of the second fin are disposed at a first side of the gate electrode, and a drain region of the first fin and a source region of the second fin are disposed at a second side of the gate electrode.
Abstract:
An electrostatic discharge (ESD) protection device includes a substrate including a plurality of active fins and a plurality of grooves. The ESD protection device includes an insulation layer on the active fins and the grooves, and a gate electrode on the active fins. The ESD protection device includes a first impurity region adjacent to a first side of the gate electrode, and a second impurity region adjacent to a second side of the gate electrode. The second side of the gate electrode may be arranged opposite to the first side. The ESD protection device includes an electrode pattern of a capacitor overlapping the first impurity region, a resistor overlapping the second impurity region, and a connection structure electrically connecting the electrode pattern, the gate electrode, and the resistor to each other.
Abstract:
Provided are an electrostatic discharge (ESD) protection device having a high-resistance region and a method of forming the same. The device includes a well on a substrate. A first impurity region is formed on the well and connected to an input/output pad. A second impurity region is formed on the well, spaced apart from the first impurity region, and connected to a ground (Vss). A third impurity region is formed on the well, spaced apart from the first impurity region, and connected to the ground (Vss). An isolation layer is formed between the first impurity region and the second impurity region. A high-resistance region, which directly contacts the first impurity region and the well and has a resistance higher than the first impurity region, is formed between the first impurity region and the isolation layer. The well and the third impurity region include first conductive type impurities. The first impurity region and the second impurity region include second conductive type impurities different from the first conductive type impurities.
Abstract:
An electrostatic discharge (ESD) protection device includes a substrate including a plurality of fins extending in a first direction, with an insulation layer on the fins. A gate electrode extending in a second direction, an electrode pattern of a capacitor, and a resistor are on the insulation layer. A drain is on a first side of the gate electrode, and a source is on a second side of the gate electrode. A connection structure electrically connects the electrode pattern, the gate electrode and the resistor. The electrode pattern is on the first side or the second side of the gate electrode, and the resistor is on the other of the first side or the second side. At least a portion of the resistor extends in the second direction.
Abstract:
A semiconductor device includes a first well in a substrate, a gate structure on the first well, a second well below the gate structure in the first well, a third well in a first side of the gate structure and in the first well to be adjacent to the second well, the third well having a conductivity type different from that of the second well, a fourth well overlapped with the third well, a fifth well in a second side of the gate structure and in the second well, a sixth well below the gate structure and in the second well, the sixth well being adjacent to the fifth well and having an impurity concentration higher than the impurity concentration of the second well, and a first device isolation layer overlapped with the second well and disposed farther away from the gate structure than the fifth well.
Abstract:
A semiconductor device includes a gate insulation layer pattern, a lower gate electrode, an upper gate electrode, and a first inner spacer. The gate insulation layer pattern is formed on a substrate. The lower gate electrode is formed on the gate insulation layer pattern. The upper gate electrode is formed on the lower gate electrode and has a width that gradually increases from a bottom portion toward a top portion thereof. The width of the bottom portion of the upper gate electrode is smaller than a width of a top surface of the lower gate electrode. The first inner spacer surrounds a sidewall of the upper gate electrode.
Abstract:
Provided are semiconductor devices. A semiconductor device includes a first well formed in a substrate; an element isolation layer formed on the first well; a second well formed in the first well on a first side of the element isolation layer; a third well formed in the second well, the third well has a higher concentration of impurities than the second well; a first electrode electrically connected to the third well; a fourth well formed in the first well on a second side of the element isolation layer; a fifth well formed in the fourth well, the fifth well has a different conductivity type from the fourth well; a second electrode electrically connected to the fifth well; and a sixth well overlapping the fourth well, the sixth well has a lower concentration of impurities than the fourth well.