Abstract:
A system-on-chip (SoC) includes a slave intellectual property (IP) block, a master IP block, and an update control unit. The slave IP block is configured to perform first processing on first data based on first control information stored in a first storage unit. The master IP block is configured to perform second processing on second data in response to receiving a first processing result obtained by performing the first processing on the first data. Performing the second processing is based on second control information stored in a second storage unit. The update control unit is configured to determine an update time of the first control information or an update time of the second control information in response to performing the first processing and performing the second processing.
Abstract:
A semiconductor device includes a first well disposed in a substrate and including a first impurity of a first conductivity type, a second well disposed in the substrate, including a second impurity of a second conductivity type different from the first conductivity type, and having first to third portions, and a gate structure formed on the first well and the second well, wherein the second portion is disposed between the first portion and the third portion, the first portion and the third portion are formed deeper than the second portion, and concentration of the second impurity of the first portion and the third portion is greater than concentration of the second impurity of the second portion.
Abstract:
Methods of forming semiconductor devices are provided. A method of forming a semiconductor device includes forming preliminary trenches adjacent opposing sides of an active region. The method includes forming etching selection regions in portions of the active region that are exposed after forming the preliminary trenches. The method includes forming trenches by removing the etching selection regions. Moreover, the method includes forming a stressor in the trenches. Related apparatuses are also provided.
Abstract:
A smart card may include data storage and transmission circuitry, a plurality of voltage controllers to supply operational power to card circuitry, a plurality of oscillators to supply an internal clock for the card, and power management circuitry. The power management circuitry may be configured to shut down the oscillators and at least one, but not all, voltage controllers during a period after a data transmission is completed.
Abstract:
A smart card may include data storage and transmission circuitry, a plurality of voltage controllers to supply operational power to card circuitry, a plurality of oscillators to supply an internal clock for the card, and power management circuitry. The power management circuitry may be configured to shut down the oscillators and at least one, but not all, voltage controllers during a period after a data transmission is completed.
Abstract:
A semiconductor device including an electrostatic discharge (ESD) protection circuit includes an input port, a logic circuit receiving an input signal applied to the input port and generating an output signal based on the input signal, and an ESD protection circuit adjusting a level of the input signal when the level of the input signal exceeds a predetermined range. The ESD protection circuit includes a first fin and a second fin arranged on a semiconductor substrate in parallel, and a gate electrode formed in a direction crossing the first fin and the second fin, each of the first fin and the second fin includes a source region, a drain region, and a channel region disposed between the source region and the drain region, the channel region is disposed under the gate electrode, a source region of the first fin and a drain region of the second fin are disposed at a first side of the gate electrode, and a drain region of the first fin and a source region of the second fin are disposed at a second side of the gate electrode.
Abstract:
Methods of forming semiconductor devices are provided. A method of forming a semiconductor device includes forming preliminary trenches adjacent opposing sides of an active region. The method includes forming etching selection regions in portions of the active region that are exposed after forming the preliminary trenches. The method includes forming trenches by removing the etching selection regions. Moreover, the method includes forming a stressor in the trenches. Related apparatuses are also provided.
Abstract:
A semiconductor device includes a first well disposed in a substrate and including a first impurity of a first conductivity type, a second well disposed in the substrate, including a second impurity of a second conductivity type different from the first conductivity type, and having first to third portions, and a gate structure formed on the first well and the second well, wherein the second portion is disposed between the first portion and the third portion, the first portion and the third portion are formed deeper than the second portion, and concentration of the second impurity of the first portion and the third portion is greater than concentration of the second impurity of the second portion.
Abstract:
A semiconductor device has reduced ON resistance (Ron) as well as a reduced electric field emanating from a current path. The semiconductor device includes a fin pattern, a gate electrode intersecting the fin pattern, a source region which has a first conductivity type and is disposed on one side of the gate electrode, a body region which has a second conductivity type, is situated within the fin pattern under the source region, and extends in a loop around the source region, a drain region which has the first conductivity type and is disposed on the other side of the gate electrode, a field dispersion region which has the second conductivity type and is situated within the fin pattern between the gate electrode and the drain region, and a drift region which has the first conductivity type, is situated within the fin pattern under the drain region and the field dispersion region, and extends in a loop around the drain region and the field dispersion region.
Abstract:
A smart card may include data storage and transmission circuitry, a plurality of voltage controllers to supply operational power to card circuitry, a plurality of oscillators to supply an internal clock for the card, and power management circuitry. The power management circuitry may be configured to shut down the oscillators and at least one, but not all, voltage controllers during a period after a data transmission is completed.