Abstract:
A semiconductor device includes a semiconductor substrate having an active surface on which semiconductor elements are provided. An interlayer insulating film is provided on the semiconductor substrate. A first via structure passes through the semiconductor substrate. The first via structure has a first diameter. A second via structure passes through the semiconductor substrate. The second via structure has a second diameter that is greater than the first diameter. The first via structure has a step portion that is in contact with the interlayer insulating film.
Abstract:
A semiconductor device includes a semiconductor substrate having an active surface on which semiconductor elements are provided. An interlayer insulating film is provided on the semiconductor substrate. A first via structure passes through the semiconductor substrate. The first via structure has a first diameter. A second via structure passes through the semiconductor substrate. The second via structure has a second diameter that is greater than the first diameter. The first via structure has a step portion that is in contact with the interlayer insulating film.
Abstract:
A method and an apparatus for reducing power consumption of an electronic device are provided. The method includes executing an app in response to a first user input and switching the app to a background in response to a second user input. The method also includes confirming whether the app that has been switched to the background satisfies at least one condition and automatically limiting an operation of the app when the app that has been switched to the background satisfies the at least one condition. A result of the automatically limiting operation the operation of the app is displayed.
Abstract:
A semiconductor device includes a semiconductor substrate including at least one semiconductor structure, an interlayer insulating layer disposed on the semiconductor substrate, at least one first via structure penetrating the semiconductor substrate and the interlayer insulating layer, including a first region having a first width at an upper surface of the interlayer insulating layer and a second region extending from the first region and having a second width at a lower surface of the semiconductor substrate, wherein a side surface of the first region and a side surface of the second region have different profiles at a boundary between the first region and the second region, and at least one second via structure penetrating the semiconductor substrate and the interlayer insulating layer and having a third width greater than the first width at an upper surface of the interlayer insulating layer.
Abstract:
An integrated circuit device with capacitors and methods of forming the integrated circuit device are provided. The methods may include forming a first lower capacitor electrode pattern on an inner surface of a hole in a mold layer. The first lower capacitor electrode pattern may have a hollow cylindrical shape and an opening in an upper surface. The method may further include forming a second lower capacitor electrode pattern plugging the opening and an upper surface of the second lower capacitor electrode pattern may be planar. The first and the second lower capacitor electrode patterns may comprise a lower capacitor electrode including a void. Additionally, the method may include removing the mold layer to expose the lower capacitor electrode, forming a dielectric layer on the lower capacitor electrode, and forming an upper capacitor electrode layer on the dielectric layer.
Abstract:
A semiconductor chip structure includes a first semiconductor chip that includes a first chip region and a first scribe lane region and a second semiconductor chip that includes a second chip region and a second scribe lane region respectively bonded to the first chip region and the first scribe lane region. The first semiconductor chip includes a first bonding wiring layer that includes a first bonding insulating layer and a first bonding electrode in the first bonding insulating layer. The second semiconductor chip includes a second bonding wiring layer that includes a second bonding insulating layer and a second bonding electrode in the second bonding insulating layer and a polishing stop pattern. The first bonding insulating layer and the first bonding electrode of the first bonding wiring layer are respectively hybrid bonded to the second bonding insulating layer and the second bonding electrode of the second bonding wiring layer.
Abstract:
A device including a first structure and a second structure is provided. The device includes a substrate, a peripheral circuit and first junction pads on the substrate; a first insulating structure surrounding side surfaces of the first junction pads; second junction pads contacting the first junction pads; a second insulating structure on the first insulating structure; a passivation layer on the second insulating structure; an upper insulating structure between the passivation layer and the second insulating structure; a barrier capping layer between the upper insulating structure and the passivation layer; conductive patterns spaced apart from each other in the upper insulating structure; a first pattern structure between the upper insulating structure and the second insulating structure; a stack structure between the second insulating structure and the first pattern structure, and including gate layers; and a vertical structure passing through the stack structure and including a data storage structure and a channel layer.
Abstract:
A semiconductor device includes a first structure including a first bonding structure, and a second structure on the first structure and including a second bonding structure connected to the first bonding structure. The first bonding structure includes a first insulating layer, a first bonding insulating layer on the first insulating layer, first bonding pads penetrating at least a portion of the first insulating layer and the first bonding insulating layer, and first metal patterns in the first insulating layer and in contact with the first bonding insulating layer, and having an upper surface at a lower level than upper surfaces of the first bonding pads. The second bonding structure includes a second bonding insulating layer bonded to the first bonding insulating layer, a second insulating layer on the second bonding insulating layer, and second bonding pads penetrating the second bonding insulating layer and connected to the first bonding pads.
Abstract:
A system for synthesising expressive speech includes: an interface configured to receive an input text for conversion to speech; a memory; and at least one processor coupled to the memory. The processor is configured to generate, using an expressivity characterisation module, a plurality of expression vectors, wherein each expression vector is a representation of prosodic information in a reference audio style file, and synthesise expressive speech from the input text, using an expressive acoustic model comprising a deep convolutional neural network that is conditioned by at least one of the plurality of expression vectors.
Abstract:
An electronic device for supporting carrier aggregation (CA) is provided. The electronic device includes a radio frequency integrated circuit (RFIC) including a plurality of mixers and a feedback circuit, at least one antenna, a coupler disposed between the RFIC and the at least one antenna to transfer a reflected signal of a transmission signal to the feedback circuit, and at least one processor operatively connected to the RFIC, wherein the at least one processor may identify whether there is a mixer which is not in use among the plurality of mixers, when the first mixer which is not in use among the plurality of mixers is identified, perform antenna impedance tuning through a first mixer and the feedback circuit, and when the plurality of mixers are all in use, perform the antenna impedance tuning through a second mixer assigned to a secondary cell (Scell) among the plurality of mixers and the feedback circuit.