摘要:
Provided is a lysis method for cells or viruses, including: immobilizing a metal-ligand complex on a solid support; and mixing the complex immobilized on the support with a cell or virus solution. According to the lysis method, by immobilizing a chemical on a solid support to perform cell lysis, the dilution problem according to the addition of a cell lysis solution can be resolved and a separate process of removing the chemical is not required so as to reduce the steps upon LOC implementation. In addition, since a variety of solid supports, such as chips, beads, nanoparticles etc. can be used, cell lysis apparatuses of various forms can be fabricated.
摘要:
A method of sequentially performing concentration and amplification of nucleic acid in a single micro chamber includes: introducing a nucleic acid-containing sample and a solution including a kosmotropic salt to a micro chamber having a hydrophilic interior surface to concentrate the nucleic acid by binding the nucleic acid on the interior surface of the micro chamber; and performing a polymerase chain reaction (PCR) by adding a PCR mixture to the chamber. Since the nucleic acid is reversibly bound to the interior surface of the micro chamber, PCR yield is higher compared with a surface of aluminum oxide in which irreversible binding occurs. In addition, all processes are sequentially performed in a single micro chamber so that the number of samples, consumables, time, and labor for treatment and analysis can be reduced, detection sensitivity can be improved, and risk of sample cross contamination significantly reduced without sample loss by eliminating transporting of the sample. A complete automated system for concentration and amplification of nucleic acid is thus readily provided.
摘要:
Provided is a lysis method for cells or viruses, including: immobilizing a metal-ligand complex on a solid support; and mixing the complex immobilized on the support with a cell or virus solution. According to the lysis method, by immobilizing a chemical on a solid support to perform cell lysis, the dilution problem according to the addition of a cell lysis solution can be resolved and a separate process of removing the chemical is not required so as to reduce the steps upon LOC implementation. In addition, since a variety of solid supports, such as chips, beads, nanoparticles etc. can be used, cell lysis apparatuses of various forms can be fabricated.
摘要:
Provided is a hybridization system for hybridizing a biochip including: a chamber device including at least a hybridization chamber including a support for a biochip and a first cover having a sample inlet; an agitation device including: two air channels connected to ends of the hybridization chamber; two valves disposed in the air channels; an integrated air channel to which the two air channels are connected; and an air pump disposed in the integrated air channel; and a washing and drying device including: a flow channel connected to one of the two air channels through a branched valve; a flow pump disposed in the flow channel; and a buffer inlet disposed opposite the flow channel.
摘要:
Provided is an agitation device used to agitate a solution in a hybridization chamber, the agitation device including: the hybridization chamber; first and second air channels connected to ends of the hybridization chamber; a first valve disposed in the first air channel; a second valve disposed in the second air channel; an integrated air channel connecting the first and second air channels; and a pump disposed in the integrated air channel. The agitation device is suitable for effective diffusion of a sample when performing hybridization using a DNA chip. Therefore, a probe can be effectively hybridized with a target material.
摘要:
Provided is a method of isolating and purifying nucleic acids using an immobilized hydrogel or polyethylene glycol (PEG)-hydrogel copolymer. The method includes: immobilizing a functional group-containing hydrogel or PEG-hydrogel copolymer on a substrate; adding a mixed sample solution containing a salt and nucleic acids to the hydrogel- or PEG-hydrogel copolymer-immobilized substrate to bind the nucleic acids to the hydrogel or the PEG-hydrogel copolymer; washing the nucleic acid-bound hydrogel or PEG-hydrogel copolymer; and eluting the nucleic acids from the hydrogel or the PEG-hydrogel copolymer using an elution solvent. Therefore, binding and elution of nucleic acids can be performed even with no addition of a separate chemical substance, and an effect on a subsequent process such as PCR can be minimized. Furthermore, the amount and intensity for binding nucleic acids can be adjusted according to PEG concentration, and the presence of a hydrogel compound on a substrate enables patterning.
摘要:
Provided is a method of controlling the pH of a solution using electrolysis in a microfluidic device comprising an electrolysis device including an anode chamber, a cathode chamber, and a partition membrane between the anode chamber and the cathode chamber, wherein the anode chamber includes an inlet and an outlet through which an anode chamber solution enters and is discharged from the anode chamber, respectively, and an electrode, and the cathode chamber includes an inlet and an outlet through which a cathode chamber solution enters and is discharged from the cathode chamber, respectively, and an electrode. The method includes: flowing the anode chamber solution containing a compound having a lower standard oxidation potential than water into the anode chamber through the inlet of the anode chamber; flowing the cathode chamber solution containing a compound having a lower standard reduction potential than water into the cathode chamber through the inlet of the cathode chamber; applying voltage between the electrode in the anode chamber and the electrode in the cathode chamber to induce electrolysis in the anode chamber and the cathode chamber; and mixing equal volumes of the acidic anode-electrolyzed solution and the basic cathode-electrolyzed solution, wherein the volumes of the cathode chamber and the anode chamber are controlled in a predetermined ratio according to a target pH of a solution obtained by mixing the acidic anode-electrolyzed solution and the basic cathode-electrolyzed solution.
摘要:
An apparatus introducing a fluid using a centrifugal force includes an introduction member including a chip receiver and a fluid introduction reservoir, the chip receiver receiving a first part of a microfluidic chip, the first part including an inlet, the fluid introduction reservoir storing a fluid to be introduced to the microfluidic chip, the fluid introduction reservoir having an exit formed to correspond to the inlet of the microfluidic chip received in the chip receiver, and a support member supporting a second part of the microfluidic chip, wherein the microfluidic chip is disposed between the introduction member and the support member, the apparatus is rotatable in a state where the introduction member is closer to a center of rotation than the microfluidic chip, and the fluid is introducible from the fluid introduction reservoir through the inlet into the microfluidic chip due to a centrifugal force generated by rotation.
摘要:
Provided are a microfluidic device including an electrolysis device for cell lysis which includes an anode chamber, a cathode chamber and a separator, in which the separator is installed between the anode chamber and the cathode chamber, the anode chamber includes an inlet and an outlet for an anode chamber solution and an electrode, and the cathode chamber includes an inlet and an outlet for a cathode chamber solution and an electrode, and a method of electrochemically lysing cells using the same.
摘要:
A field effect transistor for detecting an analyte having a thiol group includes a substrate, a source region and a drain region formed apart from each other on the substrate, the source region and the drain region being doped such that a polarity of the source and drain region is opposite to a polarity of the substrate, a channel region disposed between the source region and the drain region, an insulating layer formed of an electrically insulating material and disposed on the channel region, a gold layer disposed on the insulating layer and a reference electrode disposed apart from the gold layer.