Abstract:
This liquid crystal display device (100) includes: a vertical alignment liquid crystal layer (30); first and second substrates (10, 20); first and second electrodes (11, 21) arranged on the first and second substrates to face the liquid crystal layer; and two photo-alignment films (12, 22). Each pixel region includes first and second liquid crystal domains, of which the reference alignment directions defined by the two photo-alignment films are a first direction and a second direction different from the first direction, respectively. The first electrode has a slit cut region (11R1), through which a slit (11s) has been cut to run substantially parallel to the reference alignment direction, in a part of a region allocated to each of the first and second liquid crystal domains. The width (W) of the slit is set so that when the highest grayscale voltage is applied to the first electrode, an effective applied voltage decreases by at least 0.5 V and the alignment direction of liquid crystal molecules (30a) shifts with respect to the reference alignment direction by less than 45 degrees.
Abstract:
A technique is provided that reduces dullness of a potential provided to a line such as gate line on an active-matrix substrate to enable driving the line at high speed and, at the same time, reduces the size of the picture frame region. On an active-matrix substrate (20a) are provided gate lines (13G) and source lines. On the active-matrix substrate (20a) are further provided: gate drivers (11) each including a plurality of switching elements, at least one of which is located in a pixel region, for supplying a scan signal to a gate line (13G); and lines (15L1) each for supplying a control signal to the associated gate driver (11). A control signal is supplied by a display control circuit (4) located outside the display region to the gate drivers (11) via the lines (15L1). In response to a control signal supplied, each gate driver (11) drives the gate line (13G) to which it is connected.
Abstract:
A lighting device includes a light guide plate, a first light source, a second light source, and a case. The light guide plate includes plate surfaces and an outer peripheral surface. One of the plate surfaces is configured as a light exiting surface. Sections of the outer peripheral surface on opposite sides from each other relative to the center of the light exiting surface are configured as a first light entering surface and a second light entering surface, respectively. The first light source is disposed opposite the first light entering surface. The second light source is disposed opposite the second light entering surface. The case includes an annular wall portion surrounding an outer circumference of the light guide plate, the first light source, and the second light source. The annular wall portion includes light source non-disposing areas between the first light entering surface and the second light entering surface.
Abstract:
An illumination device according to the present invention includes: a light source row in which a plurality of light sources are aligned in a row; a light guide plate that includes a plate-shaped main body with an end thereof facing the light source row, a light-receiving portion that is arranged on the end of the main body and into which light from the light sources enters, plate-shaped side extensions that are arranged on the sides of the main body and that extend outwards further than the light-receiving portion, and a light-exiting portion that is arranged on front surfaces of the main body and the side extensions and that allows light that enters via the light-receiving portion to exit; and a supply unit that supplies light to the side extensions.
Abstract:
In the present invention, a liquid crystal display device capable of achieving a high contrast ratio and a wide viewing angle, and capable of achieving a high-speed response is provided. The liquid crystal display device in the present invention is configured such that, when viewed in a plan view, at least one contour line of a plurality of linear portions of a first electrode intersects with a branch portion of a second electrode and a branch portion of a third electrode adjacent to each other, a length of a part intersecting with the branch portion of the third electrode is longer than a length of a part intersecting with the branch portion of the second electrode, and a driving operation is performed such that a potential difference between the first electrode and the third electrode is equal to or greater than a potential difference between the first electrode and the second electrode.
Abstract:
A backlight unite 12 includes LEDs 17, an optical member 16, a positioning portion 23, and a rotation restricting portion 24. The optical member 16 includes at least a curved end surface 16C having a curved shape in a plan view included in a periphery of the optical member 16. The positioning portion 26 includes a positioning hole 25 that opens through a thickness direction of the optical member 16 and a positioning protrusion 26 that is inserted in the positioning hole 25 and is in contact with an inner wall of the positioning hole 25. The rotation restricting portion 24 includes an optical member recess 27 that is a portion of the periphery of the optical member 16 recessed along a circumferential direction and a contact portion 28 that is in contact with the optical member recess 27.
Abstract:
A liquid crystal display device includes: a first substrate; a second substrate; and a liquid crystal layer of a horizontal orientation type that is sandwiched between the first substrate and the second substrate. The first substrate includes a first electrode pair that applies a first horizontal electric field to the liquid crystal layer, an insulating layer provided on the first electrode pair, and a second electrode pair that is provided on the insulating layer and that applies a second horizontal electric field to the liquid crystal layer. The first electrode pair includes first and second linear electrodes provided with a gap therebetween. The second electrode pair includes third and fourth linear electrodes provided with a gap therebetween. In a plan view of the first substrate, the third and fourth linear electrodes extend in a direction perpendicular with respect to the first and second linear electrodes.
Abstract:
A technique is provided that reduces dullness of a potential provided to a line such as gate line on an active-matrix substrate to enable driving the line at high speed and, at the same time, reduces the size of the picture frame region. On an active-matrix substrate (20a) are provided gate lines (13G) and source lines. On the active-matrix substrate (20a) are further provided: gate drivers (11) each including a plurality of switching elements, at least one of which is located in a pixel region, for supplying a scan signal to a gate line (13G); and lines (15L1) each for supplying a control signal to the associated gate driver (11). A control signal is supplied by a display control circuit (4) located outside the display region to the gate drivers (11) via the lines (15L1). In response to a control signal supplied, each gate driver (11) drives the gate line (13G) to which it is connected.
Abstract:
The present invention provides a liquid crystal display panel and a liquid crystal display device each of which exhibits a sufficiently increased transmittance and an excellent response speed in falling, with its three-layered electrode structure that controls the alignment of liquid crystal molecules by an electric field in both rising and falling. The liquid crystal display panel of the present invention includes: a first substrate; a second substrate; and a liquid crystal layer disposed between the substrates, the first substrate and the second substrate each having an electrode, the first substrate further having a dielectric layer, the electrode of the second substrate including a pair of comb-shaped electrodes and a planar electrode.
Abstract:
Provided is a liquid crystal display device having excellent viewing angle characteristics and high contrast in a display mode using both a vertical electric field and a horizontal electric field. This liquid crystal display device is provided with a first substrate and a second substrate disposed facing each other, and a liquid crystal layer held between said first and second substrates. The liquid crystal layer contains liquid crystal molecules having a negative dielectric anisotropy. The first substrate is provided with a flat plate first electrode, a first insulating layer, and a second electrode provided in a layer other than that of the first electrode and provided separated from the first electrode by the first insulating layer. The second electrode has multiple comb-tooth sections and multiple slits, and the second substrate has a flat plate third electrode. Defining V1 as the potential difference between the first electrode and the third electrode, V2 as the potential difference between the first electrode and the second electrode, and V2—B as the potential difference between the first electrode and the second electrode when the lowest gradation is showed, V1, V2 and V2—B satisfy 0