摘要:
The present invention relates to a multi-layer dopant barrier and its method of fabrication for use in semiconductor structures. In an illustrative embodiment, the multi-layer dopant barrier is disposed between a first doped layer and a second doped layer. The multi-layer dopant barrier further includes a first dopant blocking layer adjacent the first doped layer and a second dopant blocking layer adjacent the second doped layer. A technique for fabricating the multi layer dopant barrier is disclosed. A first dopant blocking layer is formed at a first temperature, and a second dopant blocking layer is formed at a second temperature over the first barrier layer.
摘要:
A mesa stripe buried heterostructure semiconductor laser with no intediffusion of atoms between doped regions and a method of its formation are disclosed. A double dielectric mask is used to form the mesa stripe. The first mask is then partially etched and a Si-doped InP layer is selectively grown. The first and second mask are subsequently etched away and an InP(Zn) clad layer, along with a Zn-doped InGaAs contact layer, are formed. This way, the resulting structure has no contact between the InP(Zn) clad layer and the InP(Fe) layer, and the dopant atoms interdiffusion is suppressed.
摘要:
An integrated monolithic laser-modulator component having a multiple quantum well structure. This component includes an InP substrate, a laser (L) formed from a stack of semiconductor layers epitaxied on the substrate, including an active and absorbent layer and a periodic Bragg grating fixing the emission wavelength of the laser to a value slightly above an optimum wavelength of the laser gain peak. An electrooptical modulator (M) is formed from the same stack of semiconductor layers, with the exception of the Bragg grating, the active layer of the laser and the absorbing layer of the modulator being formed by the same epitaxied structure having several constrained or unconstrained quantum wells, the modulator functioning according to a confined Stark effect. The semiconductor layers of the laser and those of the modulator are electrically controlled.
摘要:
The invention is an optoelectronic device and method of fabrication where at least two optical devices are formed on a single semiconductor substrate, with each optical device including an active region such as a multi-quantum well region. The active devices are spatially separated and optically coupled by a passive waveguide formed over the substrate which provides butt joints with the active regions. The butt joints can be optimized independently from the active regions thus improving yield.
摘要:
A multi-layer dopant diffusion barrier is disclosed that effectively prevents dopant diffusion but does not contribute to parasitic pn junctions or parasitic capacitance. A multi-layer dopant diffusion barrier layer prevents dopant diffusion.
摘要:
The present invention provides an optoelectronic device, a method of manufacture thereof, and an optical communication system including the same. The optoelectronic device may include, in one particular embodiment, an active device located over a substrate and a passive device located proximate the active device and over the substrate. The optoelectronic device may further include a doped cladding layer located over the active and passive devices and a barrier layer located over the doped cladding layer and the passive device.
摘要:
A method for decreasing the diffusion of dopant atoms in the active region, as well as the interdiffuision of different types of dopant atoms among adjacent doped regions, of optoelectronic devices is disclosed. The method of the present invention employs a plurality of InAlAs and/or InGaAlAs layers to avoid the direct contact between the dopant atoms and the active region, and between the dopant atoms in adjacent blocking structures of optoelectronic devices. A semi-insulating buried ridge structure, as well as a ridge structure, in which the interdiffusion of different types of dopant atoms is suppressed are also disclosed.
摘要:
A beam expander for providing coupling between a semiconductor optical device and an optical fiber comprises a double layer structure that may be integrated with the optical device. The first, underlying layer of the expander comprises a relatively high refractive index material (e.g., 3.34), thus providing improved coupling efficiency between the optical device and the fiber. The second, covering layer of the expander comprises a relatively low refractive index material (e.g., 3.28), for providing the large mode size desired at the fiber input. The parameters of each layer can be adjusted independently, allowing for the two criteria (coupling efficiency and mode size) to be separately optimized.