Abstract:
A plasma processing system includes a process chamber, a source configured to generate a plasma in the process chamber, a platen configured to support a workpiece in the process chamber, and a pressure sensor positioned adjacent to the workpiece. The pressure sensor is configured to monitor a local pressure adjacent to the workpiece. A method includes generating a plasma in a process chamber, supporting a workpiece in the process chamber, and monitoring a local pressure adjacent to the workpiece with a pressure sensor positioned adjacent to the workpiece.
Abstract:
A plasma processing system includes a process chamber, a source configured to generate a plasma in the process chamber, a platen configured to support a workpiece in the process chamber, and a pressure sensor positioned adjacent to the workpiece. The pressure sensor is configured to monitor a local pressure adjacent to the workpiece. A method includes generating a plasma in a process chamber, supporting a workpiece in the process chamber, and monitoring a local pressure adjacent to the workpiece with a pressure sensor positioned adjacent to the workpiece.
Abstract:
Apparatuses and methods for manufacturing a solar cell are disclosed. In a particular embodiment, the solar cell may be manufactured by disposing a solar cell in a chamber having a particle source; disposing a patterned assembly comprising an aperture and an assembly segment between the particle source and the solar cell; and selectively implanting first type dopants traveling through the aperture into a first region of the solar cell while minimizing introduction of the first type dopants into a region outside of the first region.
Abstract:
A method for wafer bonding two substrates activated by ion implantation is disclosed. An in situ ion bonding chamber allows ion activation and bonding to occur within an existing process tool utilized in a manufacturing process line. Ion activation of at least one of the substrates is performed at low implant energies to ensure that the wafer material below the thin surface layers remains unaffected by the ion activation.
Abstract:
An approach for providing a cleave initiation using a varying ion implant dose is described. In one embodiment, there is a method of forming a substrate. In this embodiment, a semiconductor material is provided and implanted with a spatially varying dose of one or more ion species. A handler substrate is attached to the implanted semiconductor material. A cleave of the implanted semiconductor material is initiated from the handler substrate at a preferential location that is a function of a dose gradient that develops from the spatially varying dose of one or more ion species implanted into the semiconductor material
Abstract:
An approach for nano-cleaving a thin-film of silicon for solar cell fabrication is described. In one embodiment, there is a method of forming a substrate for use as a solar cell substrate. In this embodiment, a substrate of silicon is provided and implanted with an ion flux. A non-silicon substrate is attached to the thin-film of silicon to form a solar cell substrate.
Abstract:
A method for plasma ion implantation of a substrate includes providing a plasma ion implantation system having a process chamber, a source for producing a plasma in the process chamber, a platen for holding a substrate in the process chamber, an anode spaced from the platen, and a pulse source for generating implant pulses for accelerating ions from the plasma into the substrate. In one aspect, a parameter of an implant process is varied to at least partially compensate for undesired effects of interaction between ions being implanted and the substrate. For example, dose rate, ion energy, or both may be varied during the implant process. In another aspect, a pretreatment step includes accelerating ions from the plasma to the anode to cause emission of secondary electrons from the anode, and accelerating the secondary electrons from the anode to a substrate for pretreatment of the substrate.
Abstract:
Systems and methods for manufacturing a vacuum device, such as an electron emitter, that includes a foil exit window palced over and joined to a support grid. In one particular method, the vacuum chamber of an electron emitter has a thin foil forming an exit window at one end. The thin foil may be titanium or any suitable material and the foil will typically enlarge during a bonding process that attaches the foil to the support grid. In one manufacturing process, the support grid is provided with a surface that has contours, typically being smooth recessed surfaces, that the foil once enlarged can lie against as the vacuum pulls the foil against the grid.
Abstract:
An approach for predicting dose repeatability in an ion implantation is described. In one embodiment, an ion source is tuned to generate an ion beam with desired beam current. Beam current measurements are obtained from the tuned ion beam. The dose repeatability is predicted for the ion implantation as a function of the beam current measurements.
Abstract:
Apparatuses and methods for manufacturing a solar cell are disclosed. In a particular embodiment, the solar cell may be manufactured by disposing a solar cell in a chamber having a particle source; disposing a patterned assembly comprising an aperture and an assembly segment between the particle source and the solar cell; and selectively implanting first type dopants traveling through the aperture into a first region of the solar cell while minimizing introduction of the first type dopants into a region outside of the first region.