Abstract:
A write line circuit includes a power supply node configured to carry a power supply voltage level, a reference node configured to carry a reference voltage level, a first input node configured to receive a first data signal, a second input node configured to receive a second data signal, a third input node configured to receive a control signal, and an output node. The write line circuit is configured to, responsive to the first data signal, the second data signal, and the control signal, either output one of the power supply voltage level or the reference voltage level on the output node, or float the output node.
Abstract:
A memory cell comprises a first word line in a first layer on a first level. The memory cell also comprises a second word line having a first portion in the first layer and a second portion in a second layer. The second layer is on a second level different from the first level. The memory cell further comprises a first via layer coupling the first portion of the second word line with the second portion of the second word line.
Abstract:
A three-dimensional integrated circuit includes a first transistor, a word line, a first via, a second transistor, and a second via. The first transistor is on a first level and the second transistor is on a second level. The second level is different from the first level. The word line and the first via are coupled to the first transistor. The second via is coupled between the first transistor and the second transistor.
Abstract:
In accordance with some embodiments of the present disclosure, a circuit structure is provided. The circuit structure comprises a first transistor, a second transistor, a storage node and a word-line. Each of the two transistors comprises a gate, a source and a drain. The storage node is connected to the gate of the first transistor. The word-line is connected to the gate of the second transistor. The first and second transistors are serially connected. The first and second threshold voltages are respectively associated with the first and second transistors, and the first threshold voltage is lower than the second threshold voltage.
Abstract:
A method of using a static random access memory (SRAM) includes pre-discharging a data line to a reference voltage, activating a bit cell connected to the data line, wherein the bit cell comprises a p-type pass gate, and exchanging bit information between the data line and the activated bit cell.
Abstract:
In some embodiments, a semiconductor device includes an SRAM cell, an emulator and a suppressing device. The SRAM cell, enabled by a word line, includes a first inverter formed by a first PMOS transistor and a first NMOS transistor and stores a first data at an output of the first inverter. The emulator is configured to emulate the first inverter operating in a condition that the PMOS transistor is weaker than the first NMOS transistor in driving strength. The suppressing device is configured to, in response to a voltage at an output of the emulator, selectively suppress a voltage level of the word line.
Abstract:
A three dimensional semiconductor device includes a first memory device, a second memory device and a via. The via connects the first memory device to the second memory device.
Abstract:
A column of a memory includes a first edge cell and at least one memory cell. The first edge cell is located at a first edge of the column and includes a first edge cell reference node and a second edge cell reference node. Each of the at least one memory cells includes a first memory reference node. The first edge cell reference node is coupled to respective first memory reference nodes of the at least one memory cell. The second edge cell reference node serves as second memory reference nodes of the at least one memory cell. Front-end layers of the first edge cell are the same as front-end layers of a memory cell of the at least one memory cell.
Abstract:
A memory circuit includes first and second memory segments coupled to first and second write lines, and first and second write line circuits coupled to the first and second write lines and configured to receive first and second data signals. The first and second data signals have complementary low and high logical states during a write operation to the first or second memory segment, and each of the first and second data signals has the low logical state during a masked write operation to the first or second memory segment. The first and second write line circuits output, to the first and second write lines, first and second write line signals responsive to the first and second data signals during the write operation and float the first and second data lines during the masked write operation.
Abstract:
A method of forming a memory circuit includes generating a layout design of the memory circuit, and manufacturing the memory circuit based on the layout design. The generating of the layout design includes generating a first active region layout pattern corresponding to fabricating a first active region of a first pull down transistor, generating a second active region layout pattern corresponding to fabricating a second active region of a first pass gate transistor, and generating a first metal contact layout pattern corresponding to fabricating a first metal contact. The first metal contact layout pattern overlaps the cell boundary of the memory circuit and the first active region layout pattern. The first metal contact electrically coupled to a source of the first pull down transistor. The memory circuit being a four transistor (4T) memory cell including a first and second pass gate transistor, and a first and second pull down transistor.