Abstract:
The present invention relates to a solid-state imaging device. More specifically, the invention relates to the solid-state imaging device, which uses a MOS image sensor of a threshold voltage modulation system used for a video camera, an electronic camera, an image input camera, a scanner, a facsimile or the like. The solid-state imaging device is constructed in a manner that pixels are arrayed in a matrix form. Each pixel includes: a photo-diode for generating photo-generated charges by light irradiation; and an insulated gate field effect transistor for light signal detection, provided adjacently to the photo-diode, for storing the photo-generated charges beneath a channel region under a gate electrode, and modulating a threshold voltage by the stored photo-generated charges to detect a light signal. The gate electrodes are disposed at at least four directions around a periphery of the photo-diode, and the photo-diodes are disposed at at least four directions around a periphery of the gate electrode.
Abstract:
A phase difference-detecting apparatus for detecting a relative distance between a pair of focused images obtained from subject luminous flux passed through an objective lens to thereby judge a focusing state of the objective lens. The apparatus includes a pair of signal generating sections which receive the subject flux and provide first and second time series signals. A switching-capacitor integrator is provided including a plurality of capacitive elements and switching elements for intermittently connecting the capacitive elements to each other, and for receiving the first and second time series signals. A control device compares the sizes of the first and second time series signals with each other to thereby generate a control signal corresponding to a relation of size between the first and second time series signals. The switching elements are controlled on the basis of the control signal to cause the switching-capacitor integrated value of an absolute value of a difference between the first and second time series signals, and to cause the switching-capacitor integrator to generate, as a correlation value, an integrated value on the basis of the first and second time series signals in predetermined numbers whenever the quantity of relative movement is changed.
Abstract:
In a programming method for a NAND flash memory device, a self-boosting scheme is used to eliminate excess electrons in the channel of an inhibit cell string that would otherwise cause programming disturb. The elimination is enabled by applying a negative voltage to word lines connected to the inhibit cell string before boosting the channel, and this leads to bringing high program immunity. A row decoder circuitry to achieve the programming operation and a file system architecture based on the programming scheme to improve the efficiency of file management are also described.
Abstract:
A handheld tool includes a first power source, a second power source having a characteristic different from a characteristic of the first power source, and an operation part which is operated by a power from at least one of the first power source and the second power source to fasten a fastener.
Abstract:
An image sensor has a substrate, a dielectric layer positioned on the substrate, a pixel array including a plurality of pixels defined on the substrate, a shield electrode positioned between any two adjacent pixel electrodes of the pixels, a photo conductive layer positioned on the shield electrode and the pixel electrodes, and a transparent conductive layer covering the photo conductive layer.
Abstract:
A semiconductor memory has plural cell transistors that are arranged in a matrix. The cell transistor comprises a P type silicon substrate, a control gate CG and a pair of electrically isolated floating gates. Plural projections are formed in the silicon substrate, and a pair of N type diffusion regions as the source and the drain is formed in both sides of the projection. The control gate extending in the row direction faces the projection and the floating gate FG1, FG2 via an insulation layer. The width W1 of the floating gate FG1, FG2 in the column direction is larger than the width W2 of the control gate CG, so the floating gate FG1, FG2 and the control gate CG can be manufactured without the self-align process.
Abstract:
A multiple-bit cell transistor includes a P type silicon substrate, a gate insulation layer, a pair of N type source/drain regions, a pair of tunnel insulation layers, and a pair of floating gates. The silicon substrate is formed with a projection while the floating gates each are positioned on one of opposite side walls of the projection. Inter-polycrystalline insulation layers each are formed on one of the floating gates. A control gate faces the top of the projection via the gate insulation layer. An N type region is formed on each side of the projection and contacts the source/drain region adjoining it. The cell transistor lowers a required write voltage, broadens a current window, and enhances resistance to inter-band tunneling.
Abstract:
Disclosed is a method of storing optically generated charges by an optical signal in a solid state imaging device, which is particularly a method of storing optically generated charges by an optical signal in a solid state imaging device using a MOS image sensor of a threshold voltage modulation type, which is used for a video camera, an electronic camera, an image input camera, a scanner, a facsimile or the like. The method comprises the steps of preparing a solid state imaging device having a unit pixel including a photo diode 111 and a MOSFET 112, the MOSFET 112 having a carrier pocket 25 for storing optically generated charges generated in the photo diode 111, the carrier pocket 25 being provided under a channel region 15c in the vicinity of a source region 16, transferring the optically generated charges to the carrier pocket 25 and then storing them therein while maintaining the channel region 15c in an accumulation state such that the optically generated charges are not affected by interface levels in the channel region 15c.
Abstract:
A solid state imaging device includes a MOS image sensor of a threshold voltage modulation system employed in a video camera, an electronic camera, an image input camera, a scanner, a facsimile, or the like. The solid state imaging device includes a photo diode formed in a second semiconductor layer of opposite conductivity type in a first semiconductor layer of one conductivity type, and a light signal detecting insulated gate field effect transistor formed in a fourth semiconductor layer of the opposite conductivity type in a third semiconductor layer of one conductivity type adjacent to the photo diode. A carrier pocket is provided in the fourth semiconductor layer and a portion of the first semiconductor layer under the second semiconductor layer is thicker than that portion of the third semiconductor layer under the fourth semiconductor layer.
Abstract:
A phase difference detecting type autofocusing device capable of selectively focusing a desired one of a plurality of subjects within a field of view, by using a simple structure. The phase difference detecting type autofocusing device includes an optical system having first and second lenses, the first and second lenses having the same focal length and disposed on a first plane with the optical axes of the lenses being set in parallel. A plurality of first photosensors are disposed on a second plane in parallel with the first plane, for converting information of images focused by the first lens into electric signals; and a plurality of second photosensors are disposed on the second plane at positions covered by the second lens, for converting information of images focused by the second lent into electric signals. Each second photosensor is spaced apart in the same direction by the same distance from a corresponding one of the plurality of first photosensors.