摘要:
A SiC semiconductor device having a Schottky barrier diode includes: a substrate made of SiC and having a first conductive type, wherein the substrate includes a main surface and a rear surface; a drift layer made of SiC and having the first conductive type, wherein the drift layer is disposed on the main surface of the substrate and has an impurity concentration lower than the substrate; a Schottky electrode disposed on the drift layer and has a Schottky contact with a surface of the drift layer; and an ohmic electrode disposed on the rear surface of the substrate. The Schottky electrode directly contacts the drift layer in such a manner that a lattice of the Schottky electrode is matched with a lattice of the drift layer.
摘要:
A SiC semiconductor device having a Schottky barrier diode includes: a substrate made of SiC and having a first conductive type, wherein the substrate includes a main surface and a rear surface; a drift layer made of SiC and having the first conductive type, wherein the drift layer is disposed on the main surface of the substrate and has an impurity concentration lower than the substrate; a Schottky electrode disposed on the drift layer and has a Schottky contact with a surface of the drift layer; and an ohmic electrode disposed on the rear surface of the substrate. The Schottky electrode directly contacts the drift layer in such a manner that a lattice of the Schottky electrode is matched with a lattice of the drift layer.
摘要:
A technique achieving a higher voltage resistance by a depletion layer extending quickly within a circumferential region is provided. A semiconductor device includes an element region in which an insulated gate type switching element is provided and a circumferential region adjacent to the element region. First and second trenches are provided in the circumferential region. A front surface region of the second-conductivity-type is provided between the first and second trenches. First and second bottom surface regions of the second-conductivity-type are provided in bottom surface ranges of the first and second trenches. First and second side surface regions of the second-conductivity-type connecting the front surface region and the first or second bottom surface region is provided along side surfaces of the first and second trenches. Low area density regions are provided in at least parts of the first and second side surface regions.
摘要:
A technique disclosed herein improves a voltage resistance of an insulated gate type semiconductor device. A provided method is a method for manufacturing an insulated gate type switching device configured to switch between a front surface electrode and a rear surface electrode. The method includes implanting a first kind of second conductivity type impurities to bottom surfaces of gate trenches and diffusing the implanted first kind of second conductivity type impurities, and implanting a second kind of second conductivity type impurities to the bottom surfaces of the circumferential trenches and diffusing the implanted second kind of second conductivity type impurities.
摘要:
A switching element is provided having a semiconductor substrate. A trench gate electrode is formed in the upper surface of the semiconductor substrate. An n-type first semiconductor region, a p-type second semiconductor region, and an n-type third semiconductor region are formed in a region in contact with a gate insulating film in the semiconductor substrate. At a position below the second semiconductor region, there is formed a p-type fourth semiconductor region connected to the second semiconductor region and opposing the gate insulating film via the third semiconductor region and containing boron. A high-concentration-carbon containing region having a carbon concentration higher than that of a semiconductor region exposed on the lower surface of the semiconductor substrate is formed in at least a part of the portion of the third semiconductor region, positioned between the fourth semiconductor region and the gate insulating film, that is in contact with the fourth semiconductor region.
摘要:
Higher voltage resistance is accomplished by expanding a depletion layer more quickly within a circumferential region. A semiconductor device includes an element region, in which an insulated gate type switching element is provided, and the circumferential region. A first trench and a second trench spaced apart from the first trench are provided in the front surface in the circumferential region. Insulating films are provided in the first trench and the second trench. A fourth region of the second conductivity type is provided so as to extend from a bottom surface of the first trench to a bottom surface of the second trench. A fifth region of the first conductivity type continuous from the third region is provided under the fourth region.
摘要:
In a silicon carbide semiconductor device, a plurality of trenches has a longitudinal direction in one direction and is arranged in a stripe pattern. Each of the trenches has first and second sidewalls extending in the longitudinal direction. The first sidewall is at a first acute angle to one of a (11-20) plane and a (1-100) plane, the second sidewall is at a second acute angle to the one of the (11-20) plane and the (1-100) plane, and the first acute angle is smaller than the second acute angle. A first conductivity type region is in contact with only the first sidewall in the first and second sidewalls of each of the trenches, and a current path is formed on only the first sidewall in the first and second sidewalls.
摘要:
A semiconductor device has a semiconductor substrate including a body region, a drift region, a trench that extends from a surface of the semiconductor substrate into the drift region through the body region, and a source region located adjacent to the trench in a range exposed to the surface of the semiconductor substrate, the source region being isolated from the drift region by the body region. A specific layer is disposed on a bottom of the trench, and it has a characteristic of forming a depletion layer at a junction between the specific layer and the drift region. An insulating layer covers an upper surface of the specific layer and a sidewall of the trench. A conductive portion is formed on a part of the side wall of the trench. The conductive portion is joined to the specific layer, and reaches the surface of the semiconductor substrate.
摘要:
A SiC semiconductor device includes: a semiconductor switching element having: a substrate, a drift layer and a base region stacked in this order; a source region and a contact region in the base region; a trench extending from a surface of the source region to penetrate the base region; a gate electrode on a gate insulating film in the trench; a source electrode electrically coupled with the source region and the base region; a drain electrode on a back side of the substrate; and multiple deep layers in an upper portion of the drift layer deeper than the trench. Each deep layer has upper and lower portions. A width of the upper portion is smaller than the lower portion.
摘要:
A SiC semiconductor device includes a reverse type MOSFET having: a substrate; a drift layer and a base region on the substrate; a base contact layer and a source region on the base region; multiple trenches having a longitudinal direction in a first direction penetrating the source region and the base region; a gate electrode in each trench via a gate insulation film; an interlayer insulation film covering the gate electrode and having a contact hole, through which the source region and the base contact layer are exposed; a source electrode coupling with the source region and the base region through the contact hole; a drain electrode on the substrate. The source region and the base contact layer extend along with a second direction perpendicular to the first direction, and are alternately arranged along with the first direction. The contact hole has a longitudinal direction in the first direction.