摘要:
The present invention generally provides a metallization process for forming a highly integrated interconnect. More particularly, the present invention provides a dual damascene interconnect module that incorporates a barrier layer deposited on all exposed surface of a dielectric layer which contains a dual damascene via and wire definition. A conductive metal is deposited on the barrier layer using two or more deposition methods to fill the via and wire definition prior to planarization. The invention provides the advantages of having copper wires with lower resistivity (greater conductivity) and greater electromigration resistance than aluminum, a barrier layer between the copper wire and the surrounding dielectric material, void-free, sub-half micron selective CVD Al via plugs, and a reduced number of process steps to achieve such integration.
摘要:
The present invention generally provides a metallization process for forming a highly integrated interconnect. More particularly, the present invention provides a dual damascene interconnect module that incorporates selective chemical vapor deposition aluminum (CVD Al) via fill with a metal wire, preferably copper, formed within a barrier layer. The invention provides the advantages of having copper wires with lower resistivity (greater conductivity) and greater electromigration resistance than aluminum, a barrier layer between the copper wire and the surrounding dielectric material, void-free, sub-half micron selective CVD Al via plugs, and a reduced number of process steps to achieve such integration.
摘要:
The present invention generally provides a metallization process for forming a highly integrated interconnect. More particularly, the present invention provides a dual damascene interconnect module that incorporates selective chemical vapor deposition aluminum (CVD Al) via fill with a metal wire, preferably copper, formed within a barrier layer. The invention provides the advantages of having copper wires with lower resistivity (greater conductivity) and greater electromigration resistance than aluminum, a barrier layer between the copper wire and the surrounding dielectric material, void-free, sub-half micron selective CVD Al via plugs, and a reduced number of process steps to achieve such integration.
摘要:
The present invention provides a method and apparatus for forming an interconnect with application in small feature sizes (such as quarter micron widths) having high aspect ratios. Generally, the present invention provides a method and apparatus for depositing a wetting layer for subsequent physical vapor deposition to fill the interconnect. In one aspect of the invention, the wetting layer is a metal layer deposited using either CVD techniques or electroplating, such as CVD aluminum (Al). The wetting layer is nucleated using an ultra-thin layer, denoted as .di-elect cons. layer, as a nucleation layer. The .di-elect cons. layer is preferably comprised of a material such as Ti, TiN, Al, Ti/TiN, Ta, TaN, Cu, a flush of TDMAT or the like. The .di-elect cons. layer may be deposited using PVD or CVD techniques, preferably PVD techniques to improve film quality and orientation within the feature. Contrary to conventional wisdom, the .di-elect cons. layer is not continuous to nucleate the growth of the CVD wetting layer thereon. A PVD deposited metal is then deposited on the wetting layer at low temperature to fill the interconnect.
摘要:
The present invention relates generally to an improved process for providing complete via fill on a substrate and planarization of metal layers to form continuous, void-free contacts or vias in sub-half micron applications. In one aspect of the invention, a refractory layer is deposited onto a substrate having high aspect ratio contacts or vias formed thereon. A CVD metal layer, such as CVD Al or CVD Cu, is then deposited onto the refractory layer at low temperatures to provide a conformal wetting layer for a PVD Cu. Next, a PVD Cu is deposited onto the previously formed CVD Cu layer at a temperature below that of the melting point temperature of the metal. The resulting CVD/PVD Cu layer is substantially void-free. The metallization process is preferably carried out in an integrated processing system that includes both a PVD and CVD processing chamber so that once the substrate is introduced into a vacuum environment, the metallization of the vias and contacts occurs without the formation of an oxide layer over the CVD Cu layer. The via fill process of the present invention is also successful with air-exposure between the CVD Cu and PVD Cu steps.
摘要:
The present invention is a method for semi-selectively depositing a material on a substrate by chemical vapor deposition to form continuous, void-free contact holes or vias in sub-half micron applications. An insulating layer is preferentially deposited on the field of a substrate to delay or inhibit nucleation of metal on the field. A CVD metal is then deposited onto the substrate and grows selectively in the contact hole or via where a barrier layer serves as a nucleation layer. The process is preferably carried out in a multi-chamber system that includes both PVD and CVD processing chambers so that once the substrate is introduced into a vacuum environment, the filling of contact holes and vias occurs without the formation of an oxide layer on a patterned substrate.
摘要:
The present invention generally provides a metallization process for forming a highly integrated interconnect. More particularly, the present invention provides a dual damascene interconnect module that incorporates a barrier layer deposited on all exposed surface of a dielectric layer which contains a dual damascene via and wire definition. A conductive metal is deposited on the barrier layer using two or more deposition methods to fill the via and wire definition prior to planarization. The invention provides the advantages of having copper wires with lower resistivity (greater conductivity) and greater electromigration resistance than aluminum, a barrier layer between the copper wire and the surrounding dielectric material, void-free, sub-half micron selective CVD Al via plugs, and a reduced number of process steps to achieve such integration.
摘要:
Embodiments described herein provide a method for forming two titanium nitride materials by different PVD processes, such that a metallic titanium nitride layer is initially formed by a PVD process in a metallic mode and a titanium nitride retarding layer is formed over a portion of the metallic titanium nitride layer by a PVD process in a poison mode. Subsequently, a first aluminum layer, such as an aluminum seed layer, may be selectively deposited on exposed portions of the metallic titanium nitride layer by a CVD process. Thereafter, a second aluminum layer, such as an aluminum bulk layer, may be deposited on exposed portions of the first aluminum layer and the titanium nitride retarding layer during an aluminum PVD process.
摘要:
A multi-track magnetron having a convolute shape and asymmetric about the target center about which it rotates. A plasma track is formed as a closed loop between opposed inner and outer magnetic poles, preferably as two or three radially arranged and spirally shaped counter-propagating tracks with respect to the target center and preferably passing over the rotation axis. The pole shape may be optimized to produce a cumulative track length distribution conforming to the function L=arn. After several iterations of computerized optimization, the pole shape may be tested for sputtering uniformity with different distributions of magnets in the fabricated pole pieces. If the uniformity remains unsatisfactory, the design iteration is repeated with a different n value, different number of tracks, or different pole widths. The optimization reduces azimuthal sidewall asymmetry and improves radial deposition uniformity.
摘要翻译:具有卷绕形状且围绕其旋转的目标中心不对称的多轨磁控管。 等离子体轨道形成为相对的内部和外部磁极之间的闭合回路,优选地相对于目标中心并且优选地通过旋转轴线而形成为两个或三个径向布置且螺旋形的反向传播轨迹。 极点形状可以被优化以产生符合函数L = ar 的累积轨迹长度分布。 经过数次迭代的计算机化优化,可以测试极点形状,使其在制造的极片中具有不同的磁体分布的溅射均匀性。 如果均匀性不能令人满意,则使用不同的n值,不同数量的轨道或不同的极宽重复设计迭代。 优化可减少方位角侧壁不对称性,提高径向沉积均匀性。
摘要:
A method for metallizing integrated circuits is disclosed. In one aspect, an integrated circuit is metallized by depositing liner material on a substrate followed by one or more metal layers. The liner material is selected from the group of tantalum (Ta), tantalum nitride (TaN), niobium (Nb), niobium nitride (NbN), vanadium (V), vanadium nitride (VN), and combinations thereof. The liner material is preferably conformably deposited on the substrate using physical vapor deposition (PVD). The one or more metal layers are deposited on the barrier layer using chemical vapor deposition (CVD), physical vapor deposition (PVD), or a combination of both CVD and PVD.