Abstract:
A substrate treatment method of treating a substrate using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer, includes: a resist pattern formation step of forming a predetermined resist pattern by a resist film on the substrate; a thin film formation step of forming a thin film for suppressing deformation of the resist pattern on a surface of the resist pattern; a block copolymer coating step of applying a block copolymer to the substrate after the formation of the thin film; and a polymer separation step of phase-separating the block copolymer into the hydrophilic polymer and the hydrophobic polymer.
Abstract:
This method for processing a target object includes steps ST1 to ST4. The target object has an organic polymer layer and a resist mask on a substrate. In step ST1, the target object is electrostatically attached to an electrostatic chuck in a plasma processing apparatus. In step ST2, the organic polymer layer is etched through the resist mask by means of a plasma of a first gas. In step ST3, the target object is detached from the electrostatic chuck while a plasma of a second gas is generated. In step 4, the resist mask is peeled off. The second gas is either oxygen gas or a mixture of oxygen gas and a rare gas having an atomic weight lower than that of argon gas.
Abstract:
The present disclosure provides a substrate processing apparatus including: a processing chamber configured to process a substrate; a fluid supply source configured to supply a substrate processing fluid used in processing for the substrate in a predetermined pressure; a constant pressure supplying path configured to supply the substrate processing fluid from the fluid supply source to the processing chamber in a predetermined pressure without boosting the pressure of the substrate processing liquid; a boosted pressure supplying path configured to boost the pressure of the substrate processing fluid from the fluid supply source into a predetermined pressure by a booster mechanism and supply the pressure boosted substrate processing fluid to the processing chamber; and a control unit configured to switch over the constant pressure supplying path and the boosted pressure supplying path.