Abstract:
There is provided a substrate processing apparatus for processing a substrate, including: a storage part provided on an uppermost portion of the substrate processing apparatus and on which a substrate accommodation container for accommodating the substrate is placed; and a first transfer device configured to directly or indirectly deliver the substrate accommodation container between the storage part and a loading/unloading part, wherein the loading/unloading part is configured to place the substrate accommodation container thereon in the substrate processing apparatus and to load and unload the substrate into and from a processing part of the substrate processing apparatus, and the first transfer device is configured to deliver the substrate accommodation container with respect to an overhead hoist transport that moves above the substrate processing apparatus.
Abstract:
A treatment solution supply apparatus supplies a treatment solution to a solution treatment apparatus which applies the treatment solution to a substrate to perform a predetermined treatment. Plural solution treatment apparatuses are supply destinations of the treatment solution. The treatment solution supply apparatus includes: a sending unit common among the solution treatment apparatuses, the sending unit sends the treatment solution stored in a treatment solution supply source to each of the solution treatment apparatuses; and a control unit that controls the sending unit. The sending unit includes pumps that suck the treatment solution and load the treatment solution thereinto and send the loaded treatment solution. The control unit controls suction timing of each of the pumps so that one (or more) of the pumps becomes in a state capable of sending the treatment solution to the solution treatment apparatuses at all times.
Abstract:
A substrate processing apparatus includes: a load port into and out of which the transport container is carried; and an apparatus controller that controls operations in the load port. The apparatus controller includes a storage unit that stores transition data of parameter values sent from outside based on a transport container identification code. The transition data of the parameter values each comprises a usage count of the transport container and a corresponding parameter value that quantifies a result of at least one of an operation performed to remove the lid after the transport container is carried into the load port and an operation performed to carry the container out of the load port. The apparatus controller further includes a determination unit that determines, after a transport container is carried into the load port, presence or absence of an abnormality in that transport container based on a parameter value associated with at least one of carrying-in or carrying-out of that transport container, and past transition data of parameter values associated with that transport container.
Abstract:
A substrate processing apparatus includes a carry-in/out block having a container placement section; and a processing block, disposed to be adjacent to the carry-in/out block in a width direction, having multiple processing modules each configured to perform a process on a substrate. The carry-in/out block further includes: a transit block in which transit modules are provided on a processing block side to deliver the substrate to/from the processing block; and a first transfer mechanism configured to transfer the substrate between the container placement section and the transit block. The processing block further includes a second transfer mechanism configured to transfer the substrate between the transit block and the processing module. The first transfer mechanism has a support, and is configured to allow the substrate supported by the support to pass through the transit block in a depth direction intersecting with the width direction, when viewed from a top.
Abstract:
A substrate processing apparatus includes multiple first substrate processing devices, one or more second substrate processing devices and a transfer unit. Each of the multiple first substrate processing devices is configured to process a substrate one by one. The one or more second substrate processing devices are configured to simultaneously process multiple substrates, which are processed in the multiple first substrate processing devices. The transfer unit is configured to simultaneously carry the multiple substrates, which are processed in the multiple first substrate processing devices, into a same second substrate processing device.
Abstract:
A substrate processing apparatus includes plural heating modules each including a table on which a substrate is placed to be heated, the substrate having plural heated zones. The table has plural heaters each assigned to heat respective ones of the heated zones. Heat generation of the heaters is controlled independently. A control unit controls the heaters such that integrated quantities of heat of the respective heated zones given by the corresponding heaters from first to second time point are substantially identical to each other in each of the heating modules, and are substantially identical to each other among the heating modules. The first time point is set when a temperature transition profile of the substrate is rising toward a process temperature after placing the substrate on the table under a condition where heat generation of the heaters is stable. The second time point is set after the temperature transition profile reaches the process temperature.
Abstract:
In one embodiment, a coating and developing apparatus is provided with transfer units, provided between a stack of early-stage processing unit blocks and a stack of later-stage processing unit blocks to transfer a substrate between the transport mechanisms of laterally-adjacent unit blocks, and a vertically-movable auxiliary transfer mechanism for transporting a substrate between the transfer units. A stack of first developing unit blocks is stacked on the stack of early-stage processing unit blocks, and a stack of second developing unit blocks is stacked on the stack of later-stage processing unit blocks.
Abstract:
A substrate holder positioning method, capable of positioning a substrate holder without using any positioning jig, includes: measuring a first position of a substrate held on a substrate holder included in a substrate carrying mechanism; carrying the substrate held on the substrate holder to a substrate rotating unit for holding and rotating the substrate; turning the substrate held by the substrate rotating unit through a predetermined angle by the substrate rotating unit; transferring the substrate turned by the substrate rotating unit from the substrate rotating unit to the substrate holder; measuring a second position of the substrate transferred from the substrate rotating unit to the substrate holder; determining the position of the center of rotation of the substrate rotating unit on the basis of the first and the second position; and positioning the substrate holder on the basis of the position of the center of rotation.
Abstract:
A coating and developing apparatus includes a processing block having at least one coating film-forming unit block stack and a vertically stacked developing unit block stack. Each unit block stack includes vertically stacked unit blocks, and each unit block includes processing modules containing liquid processing modules and heating modules. Each unit block includes a transport mechanism moveable along a transport passage from a carrier block side to an interface block side, to transport a substrate between the processing modules belonging to the unit block. Transfer units are provided on the carrier block sides of the coating film-forming unit blocks and the developing unit blocks respectively, for transferring a substrate to and from the transport mechanism of the associated coating film-forming or developing unit blocks. A first transfer mechanism transfers a substrate removed from a carrier to one of the transfer units associated with the coating film-forming unit blocks.
Abstract:
A transfer apparatus for mounting and transferring a transferred component on a driven means, the transfer apparatus includes: a driving means for rotating a driving side pulley by a rotational driving force of a motor to move a belt wound around the driving side pulley, thereby moving the driven means coupled to the belt in a predetermined direction; and a transfer monitoring means for monitoring a transfer state of the driven means, wherein the transfer monitoring means detects a torque value of the motor required to move the driven means, calculates a torque differential value of the torque value with respect to time based on the detected torque value, and detects the transfer state using the calculated torque differential value.