Abstract:
An apparatus, a system, and a method for in-situ etching monitoring in a plasma processing chamber are provided. The apparatus includes a continuous wave broadband light source to generate incident light beam, an illumination system configured to illuminate an area on a substrate with an incident light beam being directed at normal incidence to the substrate, a collection system configured to collect a reflected light beam being reflected from the illuminated area on the substrate, and direct the reflected light beam to a detector, and processing circuitry. The processing circuitry is configured to process the reflected light beam to suppress background light, determine a property of the substrate or structures formed thereupon based on reference light beam and the reflected light beam that are processed to suppress the background light, and control an etch process based on the determined property.
Abstract:
An advanced optical sensor and method for detection of optical events in a plasma processing system. The method includes detecting at least one light emission signal in a plasma processing chamber. The at least one detected light emission signal including light emissions from an optical event. The method further includes processing the at least one light emission signal and detecting a signature of the optical event from the processed light emission signal.
Abstract:
A method of characterizing a device under test (DUT) includes illuminating the DUT with a broadband optical beam within an optical field of view (FOV), illuminating the DUT with an X-ray beam within an X-ray FOV overlapping the optical FOV, and concurrently acquiring X-ray metrology information, e.g., one or more X-ray images utilizing various modalities, such as absorption, phase contrast difference, darkfield, small angle X-ray scattering (SAXS) and/or fluorescence, from the X-ray FOV and a plurality of optical images of the optical FOV, each of the optical images corresponding to respective selected wavelengths of the broadband optical beam from each of ultraviolet, visible, and infrared wavelengths, for example including deep ultraviolet, near infrared, or short-wavelength infrared wavelengths. The DUT may be one or more substrates, e.g., stacked, and include electronic devices such as three-dimensional integrated devices.
Abstract:
Disclosed are embodiments of an improved apparatus and system, and associated methods for optically diagnosing a semiconductor manufacturing process. A hyperspectral imaging system is used to acquire spectrally-resolved images of emissions from the plasma, in a plasma processing system. Acquired hyperspectral images may be used to determine the chemical composition of the plasma and the plasma process endpoint. Alternatively, a hyperspectral imaging system is used to acquire spectrally-resolved images of a substrate before, during, or after processing, to determine properties of the substrate or layers and features formed on the substrate, including whether a process endpoint has been reached; or before or after processing, for inspecting the substrate condition.
Abstract:
An apparatus for in-situ etching monitoring in a plasma processing chamber includes a continuous wave broadband light source, an illumination system configured to illuminate an area on a substrate with an incident light beam being directed from the continuous wave broadband light source at normal incidence to the substrate, a collection system configured to collect a reflected light beam being reflected from the illuminated area on the substrate, and to direct the reflected light beam to a first light detector, and a controller. The controller is configured to determine a property of the substrate or structures formed thereupon based on a reference light beam and the reflected light beam, and control an etch process based on the determined property. The reference light beam is generated by the illumination system by splitting a portion of the incident light beam and directed to a second light detector.
Abstract:
Disclosed are embodiments of an improved apparatus and system, and associated methods for optically diagnosing a semiconductor manufacturing process. A hyperspectral imaging system is used to acquire spectrally-resolved images of emissions from the plasma, in a plasma processing system. Acquired hyperspectral images may be used to determine the chemical composition of the plasma and the plasma process endpoint. Alternatively, a hyperspectral imaging system is used to acquire spectrally-resolved images of a substrate before, during, or after processing, to determine properties of the substrate or layers and features formed on the substrate, including whether a process endpoint has been reached; or before or after processing, for inspecting the substrate condition.
Abstract:
Disclosed is an in-situ optical monitor (ISOM) system and associated method for controlling plasma etching processes during the forming of stepped structures in semiconductor manufacturing. The in-situ optical monitor (ISOM) can be optionally configured for coupling to a surface-wave plasma source (SWP), for example a radial line slotted antenna (RLSA) plasma source. A method is described to correlate the lateral recess of the steps and the etched thickness of a photoresist layer for use with the in-situ optical monitor (ISOM) during control of plasma etching processes in the forming of stepped structures.
Abstract:
An optical emission spectroscopy (OES) detection device includes an optical collector configured to be optically coupled to a plasma in a plasma processing apparatus, an adjustable wavelength filter optically coupled to the optical collector, and a photodetector optically coupled to the adjustable wavelength filter. The optical collector receives an optical signal from the plasma. The adjustable wavelength filter is configured to automatically adjust a passband of the adjustable wavelength filter to include a selected wavelength in response to receiving a wavelength selection signal, and allow a filtered portion of the optical signal to pass through while excluding a remaining portion of the optical signal. The filtered portion includes the selected wavelength. The photodetector is configured to generate an OES measurement in response to detecting the filtered portion of the optical signal with a response time that is less than one millisecond.
Abstract:
Aspects of the present disclosure provide a method for wavelength calibration of a spectrometer. The method can include receiving a calibration light signal having first spectral components of different first wavelengths; separating and projecting the first spectral components onto pixels of a detector of the spectrometer; establishing a relation between the first wavelengths and pixel numbers of first pixels on which the first spectral components are projected; calculating first residual errors between the first wavelengths and estimated wavelengths that are associated by the relation to the pixel numbers of the first pixels; receiving an optical signal having a second spectral component of a second wavelength; projecting the optical signal onto a second pixel; and calibrating the second wavelength based on a second residual error calculated based on one of the first residual errors that corresponds to a pair of the first pixels between which the second pixel is located.
Abstract:
An apparatus, a system, and a method for in-situ etching monitoring in a plasma processing chamber are provided. The apparatus includes a continuous wave broadband light source to generate incident light beam, an illumination system configured to illuminate an area on a substrate with an incident light beam being directed at normal incidence to the substrate, a collection system configured to collect a reflected light beam being reflected from the illuminated area on the substrate, and direct the reflected light beam to a detector, and processing circuitry. The processing circuitry is configured to process the reflected light beam to suppress background light, determine a property of the substrate or structures formed thereupon based on reference light beam and the reflected light beam that are processed to suppress the background light, and control an etch process based on the determined property.