摘要:
A method for forming carbon nanotube field effect transistors, arrays of carbon nanotube field effect transistors, and device structures and arrays of device structures formed by the methods. The methods include forming a stacked structure including a gate electrode layer and catalyst pads each coupled electrically with a source/drain contact. The gate electrode layer is divided into multiple gate electrodes and at least one semiconducting carbon nanotube is synthesized by a chemical vapor deposition process on each of the catalyst pads. The completed device structure includes a gate electrode with a sidewall covered by a gate dielectric and at least one semiconducting carbon nanotube adjacent to the sidewall of the gate electrode. Source/drain contacts are electrically coupled with opposite ends of the semiconducting carbon nanotube to complete the device structure. Multiple device structures may be configured either as a memory circuit or as a logic circuit.
摘要:
Vertical device structures incorporating at least one nanotube and methods for fabricating such device structures by chemical vapor deposition. Each nanotube is grown by chemical vapor deposition catalyzed by a catalyst pad and encased in a coating of a dielectric material. Vertical field effect transistors may be fashioned by forming a gate electrode about the encased nanotubes such that the encased nanotubes extend vertically through the thickness of the gate electrode. Capacitors may be fashioned in which the encased nanotubes and the corresponding catalyst pad bearing the encased nanotubes forms one capacitor plate.
摘要:
A fuse structure and a method for operating the same. The fuse structure operating method includes providing a structure. The structure includes (a) an electrically conductive layer and (b) N electrically conductive regions hanging over without touching the electrically conductive layer. N is a positive integer and N is greater than 1. The N electrically conductive regions are electrically connected together. The structure operating method further includes causing a first electrically conductive region of the N electrically conductive regions to touch the electrically conductive layer without causing the remaining N−1 electrically conductive regions to touch the electrically conductive layer.
摘要:
A sidewall image transfer process for forming sub-lithographic structures employs a layer of sacrificial polymer containing silicon that is deposited over a gate conductor layer and covered by a cover layer. The sacrificial polymer layer is patterned with conventional resist and etched to form a sacrificial mandrel. The edges of the mandrel are oxidized or nitrided in a plasma at low temperature, after which the polymer and the cover layer are stripped, leaving sublithographic sidewalls. The sidewalls are used as hardmasks to etch sublithographic gate structures in the gate conductor layer.
摘要:
A Y-shaped carbon nanotube atomic force microscope probe tip and methods comprise a shaft portion; a pair of angled arms extending from a same end of the shaft portion, wherein the shaft portion and the pair of angled arms comprise a chemically modified carbon nanotube, and wherein the chemically modified carbon nanotube is modified with any of an amine, carboxyl, fluorine, and metallic component. Preferably, each of the pair of angled arms comprises a length of at least 200 nm and a diameter between 10 and 200 nm. Moreover, the chemically modified carbon nanotube is preferably adapted to allow differentiation between substrate materials to be probed. Additionally, the chemically modified carbon nanotube is preferably adapted to allow fluorine gas to flow through the chemically modified carbon nanotube onto a substrate to be characterized. Furthermore, the chemically modified carbon nanotube is preferably adapted to chemically react with a substrate surface to be characterized.
摘要:
A fin field effect transistor (FinFET) gate comprises a semiconductor wafer; a gate dielectric layer over the semiconductor wafer; a conductive material on the gate dielectric layer; an activated carbon nanotube on a surface of the conductive material; and a plated metal layer on the activated carbon nanotube. Preferably, the carbon nanotube is on a sidewall of the conductive material. The conductive material comprises a first metal layer over the gate dielectric layer, wherein the first metal layer acts as a catalyst for growing the carbon nanotube, wherein the first metal layer is preferably in a range of 1-10 nm in thickness. The semiconductor wafer may comprise a silicon on insulator wafer. The FinFET gate may further comprise a second metal layer disposed between the first metal layer and the gate dielectric layer.
摘要:
Methods for fabricating alternating phase shift masks or reticles used in semiconductor optical lithography systems. The methods generally include forming a layer of phase shift mask material on a handle substrate and patterning the layer to define recessed phase shift windows. The patterned layer is transferred from the handle wafer to a mask blank. The depth of the phase shift windows is determined by the thickness of the layer of phase shift mask material and is independent of the patterning process. In particular, the depth of the phase shift windows is not dependent upon the etch rate uniformity of an etch process across a surface of a mask blank.
摘要:
A method for fabricating a metal-oxide-semiconductor device structure. The method includes introducing a dopant species concurrently into a semiconductor active layer that overlies an insulating layer and a gate electrode overlying the semiconductor active layer by ion implantation. The thickness of the semiconductor active layer, the thickness of the gate electrode, and the kinetic energy of the dopant species are chosen such that the projected range of the dopant species in the semiconductor active layer and insulating layer lies within the insulating layer and a projected range of the dopant species in the gate electrode lies within the gate electrode. As a result, the semiconductor active layer and the gate electrode may be doped simultaneously during a single ion implantation and without the necessity of an additional implant mask.
摘要:
A dielectric in an integrated circuit is formed by creating oriented cylindrical voids in a conventional dielectric material. Preferably, voids are formed by first forming multiple relatively long, thin carbon nanotubes perpendicular to a surface of an integrated circuit wafer, depositing a conventional dielectric on the surface surrounding the carbon nanotubes, and then removing the carbon nanotubes to produce the voids. A layer of dielectric and voids thus formed can be patterned or otherwise processed using any of various conventional processes. Recesses formed in the dielectric for conductors are lined with a non-conformal dielectric film to seal the voids. The use of a conventional dielectric material having numerous air voids substantially reduces the dielectric constant, leaving a dielectric structure which is both structurally strong and can be constructed compatibly with conventional processes and materials.
摘要:
A semiconductor fabrication method. The method includes providing a semiconductor structure which includes (i) a semiconductor layer, (ii) a gate dielectric layer on the semiconductor layer, and (iii) a gate electrode region on the gate dielectric layer. The gate dielectric layer is sandwiched between and electrically insulates the semiconductor layer and the gate electrode region. The semiconductor layer and the gate dielectric layer share a common interfacing surface which defines a reference direction perpendicular to the common interfacing surface and pointing from the semiconductor layer to the gate dielectric layer. Next, a resist layer is formed on the gate dielectric layer and the gate electrode region. Next, a cap portion of the resist layer directly above the gate electrode region in the reference direction is removed without removing any portion of the resist layer not directly above the gate electrode region in the reference direction.