Abstract:
Methods and devices are described for performing engine diagnostics during skip fire operation of an engine while a vehicle is being driven. Knowledge of the firing sequence is used to determine appropriate times to conduct selected diagnostics and/or to help better interpret sensor inputs or diagnostic results. In one aspect, selected diagnostics are executed when a single cylinder is fired a plurality of times in isolation relative to a sensor used in the diagnosis. In another aspect, selected diagnostics are conducted while the engine is operated using a firing sequence that insures that no cylinders in a first cylinder bank are fired for a plurality of engine cycles while cylinders in a second bank are at least sometimes fired. The described tests can be conducted opportunistically, when conditions are appropriate, or specific firing sequences can be commanded to achieve the desired isolation or skipping of one or more selected cylinders.
Abstract:
A variety of methods and devices for mitigating power train vibration during skip fire operation of an engine are described. In one aspect, the slip of a drive train component (such as a torque converter clutch) is based at least in part upon a skip fire characteristic (such as firing fraction, selected firing sequence/pattern, etc.) during skip fire operation of an engine. The modulation of the drive train component slip can also be varied as a function of one or more engine operating parameters such as engine speed and/or a parameter indicative of the output of fired cylinders (such as mass air charge).
Abstract:
Methods, devices, estimators, controllers and algorithms are described for estimating the torque profile of an engine and/or for controlling torque applied to a powertrain by one or more devices other than the engine itself to manage the net torque applied by the engine and other device(s) in manners that reduce undesirable NVH. The described approaches are particularly well suitable for use in hybrid vehicles in which the engine is operated in a skip fire or other dynamic firing level modulation manner—however they may be used in a variety of other circumstances as well. In some embodiments, the hybrid vehicle includes a motor/generator that applies the smoothing torque.
Abstract:
Methods, devices, estimators, controllers and algorithms are described for estimating the torque profile of an engine and/or for controlling torque applied to a powertrain by one or more devices other than the engine itself to manage the net torque applied by the engine and other device(s) in manners that reduce undesirable NVH. The described approaches are particularly well suitable for use in hybrid vehicles in which the engine is operated in a skip fire or other dynamic firing level modulation manner—however they may be used in a variety of other circumstances as well. In some embodiments, the hybrid vehicle includes a motor/generator that applies the smoothing torque.
Abstract:
Methods and arrangements are described for controlling transitions between firing fractions during skip fire operation of an engine in order to help smooth the transitions. Generally, firing fractions transitions are implemented gradually, preferably in a manner that relatively closely tracks manifold filling dynamics. In some embodiments, the commanded firing fraction is altered each firing opportunity. Another approach contemplates altering the commanded firing fraction by substantially the same amount each firing opportunity for at least a portion of the transition. These approaches work particularly well when the commanded firing fraction is provided to a skip fire controller that includes an accumulator functionality that tracks the portion of a firing that has been requested, but not delivered, or vice versa. In various embodiments, commanded firing fraction changes are delayed relative to initiation of the change in throttle position to help compensate for inherent delays associated with changing the manifold air pressure.
Abstract:
A variety of methods and devices for mitigating power train vibration during skip fire operation of an engine are described. In one aspect, the slip of a drive train component (such as a torque converter clutch) is based at least in part upon a skip fire characteristic (such as firing fraction, selected firing sequence/pattern, etc.) during skip fire operation of an engine. The modulation of the drive train component slip can also be varied as a function of one or more engine operating parameters such as engine speed and/or a parameter indicative of the output of fired cylinders (such as mass air charge).
Abstract:
In one aspect, a method for mitigating detonation in a skip fire engine control system is described. The working chambers of the engine are operated in a skip fire manner to deliver a desired torque. One or more detonations are detected in the engine. In response to the detection of the one or more detonations, the spark timing for one or more of the working chambers is retarded. Additionally, the firing fraction used to operate the engine is increased. The increase in the firing fraction helps to compensate for torque lost due to the retarding of the spark timing.
Abstract:
Various methods and arrangements for operating a skip fire engine control system are described. In one aspect of the invention, a distinct firing sequence is determined for each bank of working chambers that is used to operate the bank in a skip fire manner. Each firing sequence uses a different firing fraction. In another aspect of the invention, a determination is made as to whether a firing sequence should be dynamically generated or selected from a set of predefined firing sequences.
Abstract:
Methods, devices, estimators, controllers and algorithms are described for estimating the torque profile of an engine and/or for controlling torque applied to a powertrain by one or more devices other than the engine itself to manage the net torque applied by the engine and other device(s) in manners that reduce undesirable NVH. The described approaches are particularly well suitable for use in hybrid vehicles in which the engine is operated in a skip fire or other dynamic firing level modulation manner—however they may be used in a variety of other circumstances as well. In some embodiments, the hybrid vehicle includes a motor/generator that applies the smoothing torque.
Abstract:
Various methods and arrangements for improving fuel economy in decel fuel cut-off (DFCO) operation of an internal combustion engine are described. In one aspect, a catalytic converter bypass valve diverts the pumped air in DFCO mode from flowing through a catalytic converter. The diverted, pumped air may flow through a bypass line or be returned to the engine intake manifold through an exhaust gas recirculation return line. Another aspect of the invention relates to directing the diverted pumped air through an emission control device.