Abstract:
The invention relates to a method for manufacturing furnish for a paper product, wherein the manufactured furnish contains fibril cellulose material. The method includes introducing first raw material to a system, which first raw material includes cellulose pulp, introducing second raw material to the system, which second raw material includes cellulose fibers that are oxidized by nitroxyl-mediated oxidation of hydroxyl groups of the cellulose, conveying the first raw material and the second raw material to a refiner, and refining and mixing the first raw material and the second raw material in the refiner in order to produce furnish including fibril cellulose material. In addition, this invention relates to a system for manufacturing furnish and to a paper product.
Abstract:
The invention relates to a method for treating a nanofibrillar cellulose hydrogel, wherein the method comprises the steps of: providing a nanofibrillar cellulose hydrogel, wherein the nanofibrillar cellulose is oxidized nanofibrillar cellulose, wherein the oxidation has been carried out through N-oxyl mediated catalytic oxidation of cellulose-based raw material, and has at most 50 μmol of aldehyde groups per gram of dry nanofibrillar cellulose; and subjecting the nanofibrillar cellulose hydrogel to a heat treatment.
Abstract:
The invention relates to a method for reducing the viscosity of a nanofibrillar cellulose hydrogel, wherein the method comprises mixing a nanofibrillar cellulose hydrogel with an aqueous growth medium for cell culture, wherein the aqueous growth medium contains one or more salts and optionally one or more sugars, using shearing forces so that a homogeneous dispersion is formed. The invention further relates to a dispersion comprising a nanofibrillar cellulose hydrogel and an aqueous growth medium for cell culture and to a use of an aqueous growth medium.
Abstract:
One embodiment provides a method for monitoring the quality of nanofibrillar cellulose produced in a process comprising disintegrating fibers of cellulose pulp, the method comprising measuring in real-time optically the turbidity of a dispersion containing nanofibrillar cellulose obtained from a disintegrating process, and determining the quality of said produced nanofibrillar cellulose using a correlation between the measured turbidity and said quality of the produced nanofibrillar cellulose, wherein lowered turbidity indicates increased quality of the nanofibrillar cellulose. One embodiment provides a device for monitoring the quality of nanofibrillar cellulose produced in a process comprising disintegrating fibers of cellulose pulp, arranged to carry out said method.
Abstract:
One embodiment provides a method for monitoring the quality of nanofibrillar cellulose produced in a process comprising disintegrating fibers of cellulose pulp, the method comprising measuring in real-time optically the turbidity of a dispersion containing nanofibrillar cellulose obtained from a disintegrating process, and determining the quality of said produced nanofibrillar cellulose using a correlation between the measured turbidity and said quality of the produced nanofibrillar cellulose, wherein lowered turbidity indicates increased quality of the nanofibrillar cellulose. One embodiment provides a device for monitoring the quality of nanofibrillar cellulose produced in a process comprising disintegrating fibers of cellulose pulp, arranged to carry out said method.
Abstract:
The present invention provides a method for producing fibrillated cellulose, the method comprising providing pulp, treating said pulp at a consistency of at least 10% with a cellulase, and fibrillating said pretreated pulp to obtain fibrillated cellulose. The present invention also provides a nanofibrillar cellulose product.
Abstract:
A process for producing an oxidized nanofibrillar cellulose hydrogel is disclosed, wherein the process comprises oxidizing cellulose pulp fibers in the presence of hypochlorite as an oxidant and a heterocyclic nitroxyl radical as a catalyst; and disintegrating the oxidized cellulose pulp fibers to obtain a nanofibrillar cellulose hydrogel; wherein all steps of the process after oxidizing are performed under aseptic conditions. An oxidized nanofibrillar cellulose hydrogel and a system for producing the same are also disclosed.
Abstract:
A method for controlling the catalytic oxidation of cellulose includes using a heterocyclic nitroxyl compound as catalyst; oxidizing cellulose in a reaction mixture comprising liquid medium, the catalyst and hypochlorite as main oxidant; analyzing one or more oxidative chlorine species dependent on the hypochlorite concentration of the reaction mixture on line in the reaction mixture or in a gas composition which is in contact with the reaction mixture; and controlling supply of hypochlorite to the reaction mixture on the basis of the analysis.
Abstract:
In a method for producing nanofibrillar cellulose, cellulose based fibre material, in which internal bonds in cellulose fibres have been weakened by preliminary modification of cellulose, is subjected to disintegration treatment in form of pulp comprising fibres and liquid. The fibre material is supplied at a consistency higher than 10 wt-%, preferably at least 15 wt-%, to a disintegration treatment where fibrils are detached from the fibre material by joint effect of repeated impacts to the fibre material by fast moving successive elements and the weakened internal bonds of the cellulose fibres. The nanofibrillar cellulose is withdrawn from the disintegration treatment at dry matter which is equal or higher than the consistency of the fibre material. In the disintegration treatment, the fibre material is supplied through several counter-rotating rotors (R1, R2, R3 . . . ) outwards in the radial direction with respect to the rotation axis (RA) of the rotors in such a way that the material is repeatedly subjected to shear and impact forces by the effect of the blades (1) of the different counter-rotating rotors.
Abstract:
The method for preparing nanofibrillar cellulose comprises disintegrating (DIS1) fibrous cellulosic raw material to a first disintegration level to a half-fabricate, transporting (TRANS) the half-fabricate in the first disintegration level in concentrated form to a destination, and at the destination, disintegrating (DIS2) the half-fabricate from the first disintegration level to the second disintegration level to nanofibrillar cellulose.