Abstract:
A spalling process can be employed to generate a fracture at a predetermined depth within a high quality crystalline nitride substrate, such as a bulk GaN substrate. A first crystalline conductive film layer can be separated, along the line of fracture, from the crystalline nitride substrate and subsequently bonded to a layered stack including a traditional lower-cost substrate. If the spalled surface of the first crystalline conductive film layer is exposed in the resulting structure, the structure can act as a substrate on which high quality GaN-based devices can be grown.
Abstract:
This disclosure provides various methods for improved etching of spin-transfer torque random access memory (STT-RAM) structures. In one example, the method includes (1) ion beam etch of the stack just past the MTJ at near normal incidence, (2) a short clean-up etch at a larger angle in a windowed mode to remove any redeposited material along the sidewall that extends from just below the MTJ to just above the MTJ, (3) deposition of an encapsulant with controlled step coverage to revert to a vertical or slightly re-entrant profile from the tapered profile generated by the etch steps, (4) ion beam etch of the remainder of the stack at near normal incidence while preserving the encapsulation along the sidewall of the MTJ, (5) clean-up etch at a larger angle and windowed mode to remove redeposited materials from the sidewalls, and (6) encapsulation of the etched stack.
Abstract:
A wafer carrier for a plurality of wafers, the wafer carrier having a platen with a plurality of openings and a plurality of wafer retention platforms, the platen configured to rotate about a first axis, the plurality of wafer retention platforms configured to rotate about respective second axes, each of the wafer retention platforms rotatably coupled to one of the plurality of openings by friction reducing bearings, the platen and the plurality of wafer retention platforms and the friction reducing bearings all being constructed of the same material.
Abstract:
Wafer carriers and methods for moving wafers in a reactor. The wafer carrier may include a platen with a plurality of compartments and a plurality of wafer platforms. The platen is configured to rotate about a first axis. Each of the wafer platforms is associated with one of the compartments and is configured to rotate about a respective second axis relative to the respective compartment. The platen and the wafer platforms rotate with different angular velocities to create planetary motion therebetween. The method may include rotating a platen about a first axis of rotation. The method further includes rotating each of a plurality of wafer platforms carried on the platen and carrying the wafers about a respective second axis of rotation and with a different angular velocity than the platen to create planetary motion therebetween.
Abstract:
A chemical vapor deposition system for semiconductor wafer production is disclosed. The system includes a process cluster coupled to a first end of a transfer chamber. The process cluster is maintained at a pressure that is lower than atmospheric pressure. The process cluster is also configured to apply epitaxial layers on one or more wafers loaded onto a wafer carrier. The system also includes an automatic factory interface coupled to a second end of the transfer chamber. The automatic factory interface is maintained at atmospheric pressure. The system includes one or more wafer carrier cleaning modules coupled to the automatic factory interface and configured to clean one or more of the wafer carriers without removing the wafer carriers from the chemical vapor deposition system.
Abstract:
A multi-wafer metal organic chemical vapor deposition system in which adjacent wafers positioned within the system rotate about their own axes, including a reaction chamber comprising an exhaust system including a peripheral port, a multi-wafer carrier comprising a wafer carrier body and a plurality of wafer carrier discs supported within the wafer carrier body, wherein adjacent wafer carrier discs of the plurality wafer carrier discs are configured and the wafer carrier body are configured to rotate at different speeds, a multi-zone injection block positioned over the wafer carrier body, a central gas port positioned in the center of the wafer carrier body functions as a gas exhaust, and a multi-zone heater assembly positioned beneath the multi-wafer carrier.
Abstract:
Apparatus for treating wafers using a wafer carrier rotated about an axis is provided with a ring which surrounds the wafer carrier during operation. Treatment gasses directed onto a top surface of the carrier flow outwardly away from the axis over the carrier and over the ring, and pass downstream outside of the ring. The outwardly flowing gasses form a boundary over the carrier and ring. The ring helps to maintain a boundary layer of substantially uniform thickness over the carrier, which promotes uniform treatment of the wafers.
Abstract:
A spalling process can be employed to generate a fracture at a predetermined depth within a high quality crystalline nitride substrate, such as a bulk GaN substrate. A first crystalline conductive film layer can be separated, along the line of fracture, from the crystalline nitride substrate and subsequently bonded to a layered stack including a traditional lower-cost substrate. If the spalled surface of the first crystalline conductive film layer is exposed in the resulting structure, the structure can act as a substrate on which high quality GaN-based devices can be grown.