Abstract:
A linear cluster deposition system includes a plurality of reaction chambers positioned in a linear horizontal arrangement. First and second reactant gas manifolds are coupled to respective process gas input port of each of the reaction chambers. An exhaust gas manifold having a plurality of exhaust gas inputs is coupled to the exhaust gas output port of each of the plurality of reaction chambers. A substrate transport vehicle transports at least one of a substrate and a substrate carrier that supports at least one substrate into and out of substrate transfer ports of each of the reaction chambers. At least one of a flow rate of process gas into the process gas input port of each of the reaction chambers and a pressure in each of the reaction chambers being chosen so that process conditions are substantially the same in at least two of the reaction chambers.
Abstract:
In a rotating disk reactor (1) for growing epitaxial layers on substrate (3), gas directed toward the substrates at different radial distances from the axis of rotation of the disk has substantially the same velocity. The gas directed toward portions of the disk remote from the axis (10a) may include a higher concentration of a reactant gas (4) than the gas directed toward portions of the disk close to the axis (10d), so that portions of the substrate surfaces at different distances from the axis (14) receive substantially the same amount of reactant gas (4) per unit area. A desirable flow pattern is achieved within the reactor while permitting uniform deposition and growth of epitaxial layers on the substrate.
Abstract:
In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor. The system may be applied with a combination or carrier gases at multiple gas inlets, a combination of carrier and reactant gases at multiple inlets, and may be used with an arbitrarily large number of gases, when at least two gases of different molecular weights are provided. A linear flow pattern is achieved within the reactor, avoiding laminar recirculation areas, and permitting uniform deposition and growth of epitaxial layers on the substrate.
Abstract:
Methods of depositing compound semiconductors onto substrates are disclosed, including directing gaseous reactants into a reaction chamber containing the substrates, selectively supplying energy to one of the gaseous reactants in order to impart sufficient energy to activate that reactant but insufficient to decompose the reactant, and then decomposing the reactant at the surface of the substrate in order to react with the other reactants. The preferred energy source is microwave or infrared radiation, and reactors for carrying out these methods are also disclosed.
Abstract:
In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor. The system may be applied with a combination or carrier gases at multiple gas inlets, a combination of carrier and reactant gases at multiple inlets, and may be used with an arbitrarily large number of gases, when at least two gases of different molecular weights are provided. A linear flow pattern is achieved within the reactor, avoiding laminar recirculation areas, and permitting uniform deposition and growth of epitaxial layers on the substrate.
Abstract:
In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor. The system may be applied with a combination or carrier gases at multiple gas inlets, a combination of carrier and reactant gases at multiple inlets, and may be used with an arbitrarily large number of gases, when at least two gases of different molecular weights are provided. A linear flow pattern is achieved within the reactor, avoiding laminar recirculation areas, and permitting uniform deposition and growth of epitaxial layers on the substrate.
Abstract:
In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate/velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor. The system may be applied with a combination or carrier gases at multiple gas inlets, a combination of carrier and reactant gases at multiple inlets, and may be used with an arbitrarily large number of gases, when at least two gases of different molecular weights are provided. A linear flow pattern is achieved within the reactor, avoiding laminar recirculation areas, and permitting uniform deposition and growth of epitaxial layers on the substrate.
Abstract:
Methods are provided for treating wafers using a wafer carrier rotated about an axis. The wafer carrier is provided with a ring which surrounds the wafer carrier during operation. Treatment gasses directed onto a top surface of the carrier flow outwardly away from the axis over the carrier and over the ring, and pass downstream outside of the ring. The outwardly flowing gasses form a boundary over the carrier and ring. The ring helps to maintain a boundary layer of substantially uniform thickness over the carrier, which promotes uniform treatment of the wafers.
Abstract:
Apparatus for treating wafers using a wafer carrier rotated about an axis is provided with a ring which surrounds the wafer carrier during operation. Treatment gasses directed onto a top surface of the carrier flow outwardly away from the axis over the carrier and over the ring, and pass downstream outside of the ring. The outwardly flowing gasses form a boundary over the carrier and ring. The ring helps to maintain a boundary layer of substantially uniform thickness over the carrier, which promotes uniform treatment of the wafers.
Abstract:
A gas injection system for a chemical vapor deposition system includes a gas manifold comprising a plurality of valves where each of the plurality of valves has an input that is coupled to a process gas source and an output for providing process gas. Each of a plurality of gas injectors has an input that is coupled to the output of one of the plurality of valves and an output that is positioned in one of a plurality of zones in a chemical vapor deposition reactor. A controller having a plurality of outputs where each of the plurality of outputs is coupled to a control input of one of the plurality of valves. The controller instructs at least some of the plurality of valves to open at predetermined times to provide a desired gas flow to each of the plurality of zones in the chemical vapor deposition reactor.