Abstract:
The present invention provides a method of fabricating a light emitting diode chip having an active layer between an N type semiconductor layer and a P type semiconductor layer. The method comprises the steps of preparing a substrate; laminating the semiconductor layers on the substrate, the semiconductor layers having the active layer between the N type semiconductor layer and the P type semiconductor layer; and forming grooves on the semiconductor layers laminated on the substrate until the substrate is exposed, whereby inclined sidewalls are formed by the grooves in the semiconductor layers divided into a plurality of chips. According to embodiments of the present invention, a sidewall of a semiconductor layer formed on a substrate of a light emitting diode chip is inclined with respect to the substrate, whereby its directional angle is widened as compared with a light emitting diode chip without such inclination. As the directional angle of the light emitting diode chip is wider, when a white light emitting device is fabricated using the light emitting diode chip and a phosphor, light uniformity can be adjusted even though the phosphor is not concentrated at the center of the device. Thus, the overall light emitting efficiency can be enhanced by reducing a light blocking phenomenon caused by the increased amount of the phosphor distributed at the center portion.
Abstract:
The present invention relates to a light emitting device. According to the present invention, the light emitting device comprises a substrate, a plurality of light emitting cells disposed on the substrate, a first insulation layer disposed on each light emitting cell, an electrically conductive material disposed on the first insulation layer to couple two of the light emitting cells, and a second insulation layer disposed on the electrically conductive material. Each light emitting cell comprises a first semiconductor layer, a second semiconductor layer, and an inclined surface. The second insulation layer corresponds to a contour of each light emitting cell.
Abstract:
Disclosed are a chip-type LED package and a light emitting apparatus having the same. The chip-type LED package includes a thermally conductive substrate with lead electrodes formed thereon. An LED chip is mounted on the thermally conductive substrate, and a lower molding portion covers the LED chip. In addition, an upper molding portion having hardness higher than that of the lower molding portion covers the lower molding portion. The upper molding portion is formed by performing transfer molding using resin powder. Accordingly, since the lower molding portion can be formed of a resin having hardness smaller than that of the upper molding portion, it is possible to provide a chip-type LED package in which device failure due to thermal deformation of the molding portion can be prevented.
Abstract:
Disclosed herein is a method of fabricating a light emitting diode. The method comprises preparing a substrate, forming a lower semiconductor layer, an active layer and an upper semiconductor layer on the substrate, forming a photoresist pattern over the upper semiconductor layer such that a sidewall of the photoresist pattern is inclined to an upper surface of the substrate, and sequentially etching the upper semiconductor layer, active layer and lower semiconductor layer using the photoresist pattern as an etching mask. With this structure, since the light emitting diode permits light generated in the active layer to be easily emitted to an outside through the sidewalls of the semiconductor layers, it has improved light emitting efficiency.
Abstract:
The present invention relates to a light emitting device and a method of manufacturing the light emitting device. According to the present invention, the light emitting device comprises a substrate, an N-type semiconductor layer formed on the substrate, and a P-type semiconductor layer formed on the N-type semiconductor layer, wherein a side surface including the N-type or P-type semiconductor layer has a slope of 20 to 80° from a horizontal plane. Further, the present invention provides a light emitting device comprising a substrate formed with a plurality of light emitting cells each including an N-type semiconductor layer and a P-type semiconductor layer formed on the N-type semiconductor layer, and a submount substrate flip-chip bonded onto the substrate, wherein the N-type semiconductor layer of one light emitting cell and the P-type semi-conductor layer of another adjacent light emitting cell are connected to each other, and a side surface including at least the P-type semiconductor layer of the light emitting cell has a slope of 20 to 80° from a horizontal plane. Further, the present invention provides a method of manufacturing the light emitting device. Accordingly, there is an advantage in that the characteristics of a light emitting device such as luminous efficiency, external quantum efficiency and extraction efficiency are enhanced and the reliability is secured such that light with high luminous intensity and brightness can be emitted.
Abstract:
Disclosed is an AC light emitting diode having an improved transparent electrode structure. The light emitting diode comprises a plurality of light emitting cells formed on a single substrate, each of the light emitting cells having a first conductive type semiconductor layer, a second conductive type semiconductor layer positioned on one region of the first conductive type semiconductor layer, and an active layer interposed between the first and second conductive type semiconductor layers. A transparent electrode structure is positioned on each of the light emitting cells. The transparent electrode structure includes at least two portions separated from each other, or a center portion and branches laterally extending from both sides of the center portion. Meanwhile, wires electrically connect adjacent two of the light emitting cells. Accordingly, a plurality of light emitting cells are electrically connected, whereby a light emitting diode can be provided which can be driven under AC power source. Also, an improved transparent electrode structure is employed, so that the current density can be prevented from being locally increased.
Abstract:
Disclosed herein is an LED chip including electrode pads. The LED chip includes a semiconductor stack including a first conductive type semiconductor layer, a second conductive type semiconductor layer on the first conductive type semiconductor layer, and an active layer interposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer; a first electrode pad located on the second conductive type semiconductor layer opposite to the first conductive type semiconductor layer; a first electrode extension extending from the first electrode pad and connected to the first conductive type semiconductor layer; a second electrode pad electrically connected to the second conductive type semiconductor layer; and an insulation layer interposed between the first electrode pad and the second conductive type semiconductor layer. The LED chip includes the first electrode pad on the second conductive type semiconductor layer, thereby increasing a light emitting area.
Abstract:
Disclosed herein is a light emitting diode. The light emitting diode includes a support substrate, semiconductor layers formed on the support substrate, and a metal pattern located between the support substrate and the lower semiconductor layer. The semiconductor layers include an upper semiconductor layer of a first conductive type, an active layer, and a lower semiconductor layer of a second conductive type. The semiconductor layers are grown on a sacrificial substrate and the support substrate is homogeneous with the sacrificial substrate.
Abstract:
The present invention relates to a light emitting device and a method of manufacturing the light emitting device. According to the present invention, the light emitting device comprises a substrate, an N-type semiconductor layer formed on the substrate, and a P-type semiconductor layer formed on the N-type semiconductor layer, wherein a side surface including the N-type or P-type semiconductor layer has a slope of 20 to 80° from a horizontal plane. Further, the present invention provides a light emitting device comprising a substrate formed with a plurality of light emitting cells each including an N-type semiconductor layer and a P-type semiconductor layer formed on the N-type semiconductor layer, and a submount substrate flip-chip bonded onto the substrate, wherein the N-type semiconductor layer of one light emitting cell and the P-type semiconductor layer of another adjacent light emitting cell are connected to each other, and a side surface including at least the P-type semiconductor layer of the light emitting cell has a slope of 20 to 80° from a horizontal plane. Further, the present invention provides a method of manufacturing the light emitting device. Accordingly, there is an advantage in that the characteristics of a light emitting device such as luminous efficiency, external quantum efficiency and extraction efficiency are enhanced and the reliability is secured such that light with high luminous intensity and brightness can be emitted.
Abstract:
Exemplary embodiments of the present invention relate to a including a substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad arranged on the second conductive type semiconductor layer, an insulation layer disposed between the second conductive type semiconductor layer and the second electrode pad, and at least one upper extension electrically connected to the second electrode pad, the at least one upper extension being electrically connected to the second conductive type semiconductor layer.