Abstract:
An improved dual damascene structure is provided for use in the wiring-line structures of multi-level interconnects in integrated circuit. In this dual damascene structure, low-K (low dielectric constant) dielectric materials are used to form both the di-electric layers and the etch-stop layers between the metal interconnects in the IC device. With this feature, the dual damascene structure can prevent high parasite capacitance to occur therein that would otherwise cause large RC delay to the signals being transmitted through the metal interconnects and thus degrade the performance of the IC device. With the dual damascene structure, such parasite capacitance can be reduced, thus assuring the performance of the IC device.
Abstract:
A method of forming a dual damascene structure comprises the steps of providing a substrate having a first conductive layer formed thereon, and then sequentially forming a first dielectric layer, an anti-reflection layer and a second dielectric layer over the substrate. Next, the first dielectric layer, the anti-reflection layer and the second dielectric layer are patterned to form a first opening that exposes the conductive layer. Thereafter, the second dielectric layer is patterned to form a trench (or second opening) in a position above the first conductive layer. The trench and the first opening together form an opening of the dual damascene structure. Finally, a second conductive material is deposited into the opening and the trench to form conductive lines and the dual damascene structures.
Abstract:
The present invention provides a bonding pad on a semiconductor chip such that peeling of bonding pads during interconnection in the packaging process is avoided. The bonding pad is used to electrically connect an integrated circuit in the semiconductor chip with an external circuit. The semiconductor chip comprises a first dielectric layer positioned in a predetermined area on the surface of the semiconductor chip, a second dielectric layer positioned on the surface of the semiconductor chip outside the predetermined area wherein the first dielectric layer is harder than the second dielectric layer, and a bonding pad positioned on the first dielectric layer for electrically connecting anintegrated circuit (IC) in the semiconductor chip with an external circuit.
Abstract:
A method of forming an inter-metal interconnection is provided. A substrate is provided. A dielectric layer with a metal plug therein is formed on the substrate. An IMD layer is formed on the dielectric layer. An insulating layer and a PE-oxide layer are formed on the IMD layer. A photolithography and etching process is performed to form a trench in the IMD layer and to expose the metal plug in the dielectric layer. A metal is filled into the trench to electrically connect to the metal plug.
Abstract:
A method of fabricating a copper capping layer. A silicon rich nitride layer is formed on an exposed copper layer. Since the silicon rich nitride layer has more dangling bonds inside, the silicon in the silicon rich nitride layer easily reacts with the copper and a copper silicide layer is formed between the copper and the silicon rich nitride layer. Therefore, adhesion of the copper and the silicon rich nitride layer can be improved.
Abstract:
The present invention provides a semiconductor chip. The semiconductor chip comprising an integrated circuit (IC) positioned within the semiconductor chip, and a bonding pad positioned on the surface of the semiconductor chip and electrically connected with the IC. The method comprises using a probe to contact a predetermined testing area on the surface of the bonding pad to electrically test the IC, and forming a passivation layer on the surface of the semiconductor chip to passivate the surface of the semiconductor chip. The testing area of the bonding pad is covered under the passivation layer and the passivation layer comprises an opening positioned on the bonding pad outside the testing area which is used as a connecting area for performing wire bonding or bumping.
Abstract:
A method of forming a bonding pad is provided. A substrate is provided and a multi-metal layer is formed on the substrate. An inter-metal dielectric layer with a trench is formed on the multi-metal layer. A conformal barrier layer is formed on the inter-metal dielectric layer. A first metal layer is formed on the barrier layer to fill a part of the trench. A second metal layer is formed on the first metal layer to fill the trench. A part of the first metal layer and a part of the second metal layer flowing out the trench are removed to expose the inter-metal dielectric layer. A cap layer is formed on the inter-metal dielectric layer. A passivation layer is formed on the cap layer. A part of the passivation and a part of the cap layer are removed to form a bonding pad window by a defined masking layer.
Abstract:
A method to fabricate a dual damascene structure in a substrate is disclosed in the present invention. A first silicon oxide layer is deposited over the substrate and a silicon nitride layer is formed on the first silicon oxide layer. The first silicon oxide layer and the silicon nitride layer are etched in order to form a via hole on the substrate. Afterwards, a second silicon oxide layer is deposited to refill into the via hole and to cover the silicon nitride layer. A dry etching process is performed to remove the second silicon oxide layer in the via hole and to form a metal trench in the second silicon oxide layer on the silicon nitride layer and a metal trench in the second silicon oxide layer above the via hole. After the formation of the metal trenches, a portion of the second silicon oxide layer is remained on the sidewalls and the bottom of the via hole. A dry etching process is performed to remove the remaining portion of the second silicon oxide layer. At last, metal material is deposited to refill into the via hole and the metal trench, it is followed by the metal CMP processs to remove the excess metal over the silicon oxide. The dual metal-damascene structure on the substrate is complete.
Abstract:
An integrated circuit device and method for manufacturing the integrated circuit device provide improved control over a shape of a trench for forming the source and drain features of integrated circuit device, by forming a second doped region in a first doped region and removing the first and the second doped regions by a first and a second wet etching processes.
Abstract:
The present disclosure provides a semiconductor device. The semiconductor device includes a silicon substrate. The semiconductor device includes first and second regions that are disposed in the substrate. The first and second regions have a silicon compound material. The semiconductor device includes first and second source/drain structures that are partially disposed in the first and second regions, respectively. The semiconductor device includes a first gate that is disposed over the substrate. The first gate has a first proximity to the first region. The semiconductor device includes a second gate that is disposed over the substrate. The second gate has a second proximity to the second region. The second proximity is different from the first proximity. The first source/drain structure and the first gate are portions of a first transistor, and the second source/drain structure and the second gate are portions of a second transistor.