摘要:
A semiconductor device includes: a substrate having a first side and a second side; an IGBT; and a diode. The substrate includes a first layer, a second layer on the first layer, a first side N region on the second layer, second side N and P regions on the second side of the first layer, a first electrode in a first trench for a gate electrode, a second electrode on the first side N region and in a second trench for an emitter electrode and an anode electrode, and a third electrode on the second side N and P regions for a collector electrode and a cathode. The first trench penetrates the first side N region and the second layer, and reaches the first layer. The second trench penetrates the first side N region, and reaches the second layer.
摘要:
A semiconductor device includes: a semiconductor substrate; an IGBT cell; and a diode cell. The substrate includes a first layer on a first surface, second and third layers adjacently arranged on a second surface of the substrate and a fourth layer between the first layer and the second and third layers. The first layer provides a drift layer of the IGBT cell and the diode cell. The second layer provides a collector layer of the IGBT cell. The third layer provides one electrode connection layer of the diode cell. A resistivity ρ1 and a thickness L1 of the first layer, a resistivity ρ2 and a thickness L2 of the fourth layer, and a half of a minimum width W2 of the second layer on a substrate plane have a relationship of (ρ1/ρ2)×(L1·L2/W22)
摘要:
The present invention provides an insulated gate semiconductor device which has floating regions around the bottoms of trenches and which is capable of reliably achieving a high withstand voltage. An insulated gate semiconductor device 100 includes a cell area through which current flows and an terminal area which surrounds the cell area. The semiconductor device 100 also has a plurality of gate trenches 21 in the cell area and a plurality of terminal trenches 62 in the terminal area. The gate trenches 21 are formed in a striped shape, and the terminal trenches 62 are formed concentrically. In the semiconductor device 100, the gate trenches 21 and the terminal trenches 62 are positioned in a manner that spacings between the ends of the gate trenches 21 and the side of the terminal trench 62 are uniform. That is, the length of the gate trenches 21 is adjusted according to the curvature of the corners of the terminal trench 62.
摘要:
A n.sup.- -type source region 5 is formed on a predetermined region of the surface layer section of the p-type silicon carbide semiconductor layer 3 of a semiconductor substrate 4. A low-resistance p-type silicon carbide region 6 is formed on a predetermined region of the surface layer section in the p-type silicon carbide semiconductor layer 3. A trench 7 is formed in a predetermined region in the n.sup.+ -type source region 5, which trench 7 passes through the n.sup.+ -type source region 5 and the p-type silicon carbide semiconductor layer 3, reaching the n.sup.- -type silicon carbide semiconductor layer 2. The trench 7 has side walls 7a perpendicular to the surface of the semiconductor substrate 4 and a bottom side 7b parallel to the surface of the semiconductor substrate 4. The hexagonal region surrounded by the side walls 7a of the trench 7 is an island semiconductor region 12. A high-reliability gate insulating film 8 is obtained by forming a gate insulating layer on the side walls 7a which surround the island semiconductor region 12.
摘要:
A p-type silicon carbide semiconductor having a high carrier concentration and activation rate is provided by doping boron as an acceptor impurity in a single crystal silicon carbide. The boron occupies silicon sites in a crystal lattice of the single crystal silicon carbide.
摘要:
A manufacturing method of a vertical DMOSFET having a concave channel structure, which does not permit the introduction of defects or contaminant into the channel part and which can make the shape of the groove uniform, is disclosed. On a surface of a (100)-oriented n.sup.- -on-n.sup.+ epitaxial wafer is formed an initial groove by chemical dry etching. The grooved surface is then oxidized by LOCOS technique to form a LOCOS oxide film, whereby the concave structure is formed on the epitaxial wafer. The concave width is set to be at least twice the concave depth, and the sidewall angle is set to be approximately 50.degree. to make the sidewall plane (111) of high channel mobility plane. Following this process, p-type and n-type impurities are diffused from the main surface using the LOCOS oxide film as a double diffusion mask to form a body region and a source region.
摘要:
An insulated gate bipolar transistor has a reverse conducting function built therein. A semiconductor layer of a first conduction type is formed on the side of a drain, a semiconductor layer of a second conduction type for causing conductivity modulation upon carrier injection is formed on the semiconductor layer of the first conduction type, a semiconductor layer of the second conduction type for taking out a reverse conducting current opposite in direction to a drain current is formed in the semiconductor layer of the second conduction type which is electrically connected to a drain electrode, and a semiconductor layer of the second conduction type is formed at or in the vicinity of a pn junction, through which carriers are given and received to cause conductivity modulation, with a high impurity concentration resulting in a path for the reverse conducting current into a pattern not impeding the passage of the carriers. Therefore, the built-in reverse conducting function has a low operating resistance, a large reverse current can be passed, there is no increase in on-resistance, and the turn-off time can be shortened.
摘要:
A vertical type power MOSFET remarkably reduces its ON-resistance per area. A substantial groove formation in which a gate structure is constituted is performed beforehand utilizing the LOCOS method before the formation of a p-type base layer and an n.sup.+ -type source layer. The p-type base layer and the n.sup.+ -type source layer are then formed by double diffusion in a manner of self-alignment with respect to a LOCOS oxide film, simultaneously with which channels are set at sidewall portions of the LOCOS oxide film. Thereafter the LOCOS oxide film is removed to provide a U-groove so as to constitute the gate structure. Namely, the channels are set by the double diffusion of the manner of self-alignment with respect to the LOCOS oxide film, so that the channels, which are set at the sidewall portions at both sides of the groove, provide a structure of exact bilateral symmetry, there is no positional deviation of the U-groove with respect to the base layer end, and the length of the bottom face of the U-groove can be made minimally short. Therefore, the unit cell size is greatly reduced, and the ON-resistance per area is greatly decreased.
摘要:
A device for driving a load reactance element, such as a piezoelectric actuator for a fuel injection system, including a series reactance element connected in series with the load reactance element, and a resonance circuit formed by the load reactance and the series reactance. First and second switching elements are connected between the resonance circuit and the power source or ground potential. Each of the first and second switching elements is rendered conductive only during a half cycle of resonance. The directions of the load current flowing through the load reactance element are switchable by making alternately the first and second switching elements conductive.
摘要:
A coated layer type resistor device having a first resistor element and a second resistor element. The ratio between the resistances of the first and second resistor elements is selected to be greater than a predetermined ratio. The first resistor element is formed on an insulator substrate and consists of a resistor layer and end conductor electrodes at the ends of the resistor layer, while the second resistor element is formed on the substrate and consists of a resistor layer, end conductor electrodes, and a plurality of intermediate conductors. The distance between adjacent ones of the intermediate conductors and the distance between one of the end conductor electrodes and the adjacent intermediate conductor in the second resistor element is equal to the distance between the end conductor electrodes in the first resistor element, so that the temperature coefficient property of the resistance is equal in both the first and second resistor elements.