摘要:
A manufacturing method of a vertical DMOSFET having a concave channel structure, which does not permit the introduction of defects or contaminant into the channel part and which can make the shape of the groove uniform, is disclosed. On a surface of a (100)-oriented n.sup.- -on-n.sup.+ epitaxial wafer is formed an initial groove by chemical dry etching. The grooved surface is then oxidized by LOCOS technique to form a LOCOS oxide film, whereby the concave structure is formed on the epitaxial wafer. The concave width is set to be at least twice the concave depth, and the sidewall angle is set to be approximately 50.degree. to make the sidewall plane (111) of high channel mobility plane. Following this process, p-type and n-type impurities are diffused from the main surface using the LOCOS oxide film as a double diffusion mask to form a body region and a source region.
摘要:
A semiconductor device, comprising: a semiconductor substrate comprising silicon carbide of a first conductivity type; a silicon carbide epitaxial layer of the first conductivity type; a first semiconductor region formed on the semiconductor substrate and comprising silicon carbide of a second conductivity type; a second semiconductor region formed on the first semiconductor region, comprising silicon carbide of the first conductivity type and separated from the semiconductor substrate of the first conductivity type by the first semiconductor region; a third semiconductor region formed on the semiconductor region, connected to the semiconductor substrate and the second semiconductor region, comprising silicon carbide of the first conductivity type, and of higher resistance than the semiconductor substrate; and a gate electrode formed on the third semiconductor region via an insulating layer; wherein the third semiconductor layer is depleted when no voltage is being applied to the gate electrode so that said semiconductor device has a normally OFF characteristic.
摘要:
A vertical type semiconductor device is provided with an improved construction which greatly decreases the on-resistance without impairing the breakdown voltage thereof. In the fundamental DMOS cells that control a current to constitute the vertical semiconductor device, through-hole cells are arranged along the sides of a cell having a channel. The through-hole cell includes a through-hole extending from the surface of an n.sup.- -type drift region toward an n.sup.+ -type drain region, and also includes an n.sup.+ -type through-hole region that is formed by diffusing impurities from the inner wall of the through-hole which is continuous with the n.sup.+ -type drain region. A breakdown voltage of the element is maintained by the n.sup.- -type drift region between a p-type well region and the n.sup.+ -type through-hole region or the n.sup.+ -type drain region. Given the unique arrangement of the through-hole cells, the JFET resistance component becomes negligibly small between the DMOS cells neighboring along the sides of the cells despite the fact that the cells are finely formed, and a small on-resistance is exhibited.
摘要:
A semiconductor device with a current detecting function in which in place of an external resistor for detecting an operation current such as drain current or collector current of a device such as an FET or bipolar transistor, a probe electrode is formed in proximity to the device depletion layer to connect therethrough with the device channel to generate a probe voltage corresponding to the operation current.
摘要:
A vertical MOSFET, which can control AC current flowing through a device only by the gate voltage, is obtained. On an n.sup.+ silicon layer is formed an n.sup.- silicon layer. Within the n.sup.- silicon layer is formed a p-body region. Within the p-body region is formed an n.sup.+ source region. On top of a substrate are formed a source electrode in contact only with the source region and a base electrode in contact only with the p-body region. The source electrode and the base electrode are connected to each other through a resistance at the outside. On a channel region is formed a gate electrode through a gate oxide film (insulating film). When the above semiconductor device is in the reverse bias conduction, the exciting current is controlled only by the gate voltage by setting the current flowing from a source terminal through the resistance to the base electrode, the p-body region and the n.sup.- silicon layer to be negligibly small as compared with the current flowing from the source terminal through the source electrode to the n.sup.+ source region, the channel region and the n.sup.- silicon layer.
摘要:
In a silicon carbide semiconductor device such as a trench gate type power MOSFET, the film thickness and the impurity concentration of a thin film silicon carbide semiconductor layer formed on a trench side face to constitute an accumulation-type channel-forming region and enable the device to operate with a low gate voltage, low on-resistance and low power loss are set so that on impression of a reverse bias voltage a pn junction between a P-type epitaxial layer and an n.sup.- -type epitaxial layer undergoes avalanche breakdown before the thin film silicon carbide semiconductor layer undergoes punch-through. By this means it is possible to obtain a target high source-drain withstand voltage.
摘要:
In a pixel part, in a first active region, a photodiode and a transferring transistor are formed. In a second active region, a resetting transistor is formed. In a pixel part, in a first active region, a photodiode and a transferring transistor are formed. In a second active region, an amplifying transistor is formed. The first and second active regions are respectively the same in shape in image pixel parts. The resetting transistor and the amplifying transistor are shared by the pixel parts.
摘要:
A solid state imaging device according to an aspect of the present invention includes: a pixel array (21) including pixel units arranged in rows and columns; a vertical shift register (26) which selects one of the rows of the pixel array (21); a column amplifier unit (22) including column amplifiers each of which is provided for a corresponding one of the columns and amplifies a column signal provided from the pixel unit included in the selected row; and a limiting circuit which limits an output voltage of the column amplifier to no more than a predetermined voltage that can be changed, wherein the limiting circuit changes the predetermined voltage according to switching between a normal mode and a high-sensitivity mode.
摘要:
There is provided an image processor and a method thereof for high-speed compensation for taken-image blurs produced by camera shakes or the like. In the first instance, a motion-detecting area is selected for each of two images taken by an image sensor. When projective data is calculated by means of computing in a predetermined direction pixels of the motion-detecting areas, the motion vector between the two images can be acquired based on the projective data. The image correlativity between the two images is then calculated in the direction that the motion vector designates; and the amount of pixel displacement between the two images is calculated based on the correlativity values acquired by the calculation. Moreover, the area that has been produced by displacing an image output area in a camera-shake compensation area designated in the second frame, by the pixel-displacement amount calculated by a displacement calculator is cut away from the camera-shake compensation area, and is outputted as an image for the image output area of the second frame.
摘要:
A solid-state imaging device includes first-group pixels 41, second-group pixels 42 skipped during thinning drive, and a scanning section 13. The scanning section 13 drives each of the first-group pixels 41 to perform read operation of outputting the output signal and initializing the amount of the signal charge accumulated in the photoelectric conversion element to a first level, and also drives each of the second-group pixels 42 to perform discharge operation of initializing the amount of the signal charge accumulated in the photoelectric conversion element to a second level that is higher than the first level and lower than a saturation signal level of the photoelectric conversion element 12.