摘要:
A controller for determining whether a previously-detected vehicle malfunction still exists. If the malfunction is no longer detected in the sensor signals, a vehicle control system operates in a first operational state or normal operational state with respect to the previously-malfunctioning sensor (e.g., signals from the sensor are used to control the vehicle). If the malfunction continues to be detected, the vehicle control system operates in a second operational state or malfunction state with respect to the malfunctioning sensor in which the signals from the sensor are not used to control the vehicle.
摘要:
A control system for a vehicle (10) is described for use in conjunction with the safety system (44) of the vehicle (10). A tire sensor or plurality of tire sensors generates tire force signals. The tire force signals may include lateral tire forces, longitudinal (or torque) tire forces, and normal tire forces. Based upon the tire force signals, a safety system (44) may be activated. The tire force sensors may be used to monitor various conditions including but not limited to sensing a roll condition, wheel lift detection, a trip event, oversteering and understeering conditions, pitch angle, bank angle, roll angle, and the position of the center of gravity of the vehicle.
摘要:
A control system (18) for an automotive vehicle (19) having a vehicle body includes a cluster (16) of vehicle dynamic sensors (27, 28, 30, 31), the output signals from the sensors (Yaw Rate Sensor, Roll Rate Sensor, Longitudinal Acceleration Sensor, Lateral Acceleration Sensor) are corrected for errors by removing the zero output DC bias. Such bias constitutes an error that may occur as a result of temperature changes, manufacturing defects, or other factors. The system (18) also compensates for the drift in the sensor output signals that occur during vehicle operation.
摘要:
First and second acceleration sensor elements for detecting the acceleration of a vehicle in the direction in which the vehicle travels, and the acceleration of the vehicle in the direction transverse to the travel direction of the vehicle are mounted on a sensor substrate which is mounted on a control substrate of a vehicle control device. With the sensor substrate positioned such that the sensing directions of the respective sensor elements are perpendicular to or parallel to the vertical line, the outputs of the respective sensor elements are detected as zero errors or gain errors. The sensor substrate is then mounted on a vehicle and with the vehicle placed on a horizontal surface, a signal is sent to an electronic control unit (ECU) of the vehicle control device so that the ECU can recognize that the vehicle is horizontal. Based on the outputs from the first and second sensor elements at this time, the deviation angles of the sensor elements about the X-axis and Y-axis directions are calculated. The acceleration in the X-axis direction is calculated from signals from wheel speed sensors. Based on the deviation angles and the acceleration in the X-axis direction, the deviation angle of the sensor elements about the Z-axis is calculated. Based on the thus calculated deviation angles and zero errors and/or gain errors, the outputs of the sensor elements are corrected to obtain true accelerations in the X-axis and Y-axis directions.
摘要:
A stability control system (24) for an automotive vehicle as includes a plurality of sensors (28–37) sensing the dynamic conditions of the vehicle and a controller (26) that controls a distributed brake pressure to reduce a tire moment so the net moment of the vehicle is counter to the roll direction. The sensors include a speed sensor (30), a lateral acceleration sensor (32), a roll rate sensor (34), and a yaw rate sensor (20). The controller (26) is coupled to the speed sensor (30), the lateral acceleration sensor (32), the roll rate sensor (34), the yaw rate sensor (28). The controller (26) determines a roll angle estimate in response to lateral acceleration, roll rate, vehicle speed, and yaw rate. The controller (26) changes a tire force vector using brake pressure distribution in response to the relative roll angle estimate.
摘要:
The invention discloses an electrohydraulic pressure control device (30) with integrated pressure sensors (16) for sensing the pressure of a fluid in pressure lines (34), wherein several pressure transducers (16) are arranged in a hollow space (10), each comprising a pressure metering diaphragm (32) and an electrically passive transducer (33), and the transducer does not comprise a device for calibration of the electric transducer signal. The invention further discloses a method for the compensation of errors, wherein error-corrected pressure parameters are calculated from the pressure parameters of the pressure sensors by means of a numerical allocation specification.
摘要:
A control system (18) for an automotive vehicle (10) having a vehicle body includes a sensor system (16) having housing (52) oriented within the vehicle body. Positioned within the housing (52) are a roll angular rate sensor (31), a yaw angular rate sensor (30), a pitch angular rate sensor (32), a lateral acceleration sensor (27), a longitudinal acceleration sensor (28), and a vertical acceleration sensor (29). The vehicle (10) also has a safety system (38). The controller (26) determines a roll misalignment angle, a pitch misalignment angle and a yaw misalignment angle as a function of the sensor outputs of the roll rate, the pitch rate, the yaw rate, the lateral acceleration, the longitudinal acceleration and the vertical acceleration. The motion variables the vehicle along the vehicle body-fixed frames, including the roll rate, the pitch rate, the yaw rate, the lateral acceleration, the longitudinal acceleration and the vertical acceleration, are then compensated based on the detected sensor misalignments and the sensor outputs of the roll rate, the pitch rate, the yaw rate, the lateral acceleration, the longitudinal acceleration and the vertical acceleration. The controller (26) generates a control signal for controlling the safety system in response to the compensated roll rate, pitch rate, yaw rate, lateral acceleration, longitudinal acceleration and vertical acceleration.
摘要:
A method for correcting non-linearities of an output signal of an electrical component with the aid of a characteristics map that is defined by discrete interpolation points. In this context, the adjacent interpolation points of the characteristics map are ascertained as a function of at least one signal influencing the non-linearities of the output signal. Interpolation is carried out between these interpolation points, and a corresponding correction signal is ascertained as a function of the or each signal by an interpolation. The output signal of the electrical component is corrected as a function of the correction signal. To improve the correction of non-linear transfer characteristics and/or temperature responses of the electrical component, it is proposed that the or each signal for addressing the characteristics map be high-pass filtered, and the correction signal be ascertained as a function of the or each signal by the interpolation and a subsequent low-pass filtering.
摘要:
A control system (13) for an automotive vehicle (10) includes a longitudinal accelerometer (24) that generates a longitudinal acceleration signal corresponding to a longitudinal acceleration of a center of gravity (COG) of the vehicle body. A lateral velocity sensor (22) generates a lateral velocity signal corresponding to the lateral velocity of the vehicle body. A controller (14) is coupled to the yaw rate sensor (18), the longitudinal accelerometer (24) and the lateral velocity sensor (22). The controller (14) determines a longitudinal speed from the longitudinal acceleration signal. The controller determines a vehicle pitch angle in response to the longitudinal speed, the yaw rate signal and the lateral velocity signal.
摘要:
A method of determining a vehicle steering wheel angle by receiving at least one steering sensor output from at least one steering sensor. The method then receives a vehicle speed signal. A centered steering angle is determined based on the received vehicle speed signal and the steering sensor output.