Abstract:
The cable includes continuous glass filaments which are helically plied in rovings at a constant helical angle from cable center to outer surface and bonded together in elastomeric material. When heated, thermal elongation of the filaments is opposed by simultaneous radially directed thermal volumetric expansion of the elastomeric material. Thus, with respect to overall cable length, thermal elongation of the cable is opposed by a simultaneous increase in cable cross sectional area such that thermal elongation effects are controllable, dependent upon the thermal expansion properties of the filament and elastomeric materials used, by controlling the helical angle at which the filaments are plied to obtain either expanding, contracting or constant length cables, as desired. Thermal contraction effects produced by cooling the cable also are controllable by controlling the helical angle. In some high tensile load cable applications, the helical angle additionally may be related to tensile load, depending upon the modulus of elasticity of the filaments used. The invention is particularly adapted to helically plied glass fiber cables which are thermally stable over a wide range of temperatures.
Abstract:
A composite glass fiber cable is disclosed having a negative linear coefficient of thermal expansion which is controllable by variation of the .Iadd.helical angle or angles of .Iaddend.twist of helically plied glass roving to substantially zero change in length over a wide variation in environmental temperatures under varying load conditions. .Iadd.It is possible, by controlling the helical angle and maintaining it constant from the cable center to outer surface, to control thermal elongation effects on the cable to obtain either expanding, contracting or constant length cables over a wide temperature range. .Iaddend.
Abstract:
The invention provides a steel cord, the steel cord comprises two or more steel filaments, at least one of the steel filaments has a twist pitch of 6 mm to 40 mm, each of the steel filaments has a tip rise of less than 5 mm with a gauge length of 200 mm after being unravelled out of the steel cord. The invention steel cord has an improved straightness with reduced steel filament fracture risk.
Abstract:
A method for manufacturing a rope structure comprising providing, around a first roller and a second roller, a loop including a plurality of twisted strands. The method further comprising feeding a plurality of body strands onto the loop, feeding including, with the plurality of body strands connected to the loop, moving the loop about the first roller and the second roller to cause the body strands to lay and be twisted on the plurality of twisted strands.
Abstract:
The invention provides a steel cord with a construction of n×1, n is the number of the steel filaments of the steel cord, the steel cord has an elongation at 2.5N-50N of less than 1.2% and a twist pitch of greater than 16 mm, each of the steel filaments has a form of helical wave with a wave length L expressed in mm and a wave height H expressed in mm when being unravelled from said steel cord, L is greater than 16 mm, each of the steel filaments has a space volume Vs satisfying that, Vs=L×H2×π/4, and Vs>20 mm3. The invention steel cord is beneficial for the stress distribution.
Abstract:
A process for producing a high strength rope comprising the step of i) providing a uniaxially oriented tape (10) comprising ultra-high molecular weight polyethylene, the tape (10) having a tensile strength of at least 0.9 GPa, and ii) simultaneously twisting and fibrillating the tape (10) into a twisted strand of fibrillated tape with a coherent network of filaments and fibrils. A rope obtainable by the process and products comprising the rope are also disclosed.
Abstract:
A rope including polyethylene elongate elements oriented in the length direction of the rope, where for at least part of the elongate elements the distance of the element to a central longitudinal rope axis varies over the length of the rope. The polyethylene elongate elements including tapes of ultra-high molecular weight polyethylene, the tapes having a width to thickness ratio of at least 10 and a polymer solvent content below 0.05 wt. %. The distance of at least part of the elements to the central longitudinal rope axis varies over the length of the rope between a longitudinal line which is at most 30% from the outside of the rope and a longitudinal line which is at most 30% from the central longitudinal axis of the rope. Such a rope shows a high strength-strength ratio (the ratio between the strength under use conditions and the fresh strength of the rope).
Abstract:
A steel cord for reinforcing a rubber article has a multi-twisted structure formed by twisting a plurality of sheath strands (2) formed by twisting a plurality of wires around a core strand (1) formed by twisting a plurality of wires, and the core strand (1) and the sheath strands (2) include at least a 2-layer-twisted structure formed by twisting core wires and sheath wires respectively. The relationship represented by the following formula 1.8≦[(S·cos2α)/{r·(φ1+φ2)}]×100≦4.2 is satisfied, wherein φ1: the diameter of an outermost wire of the strand (1), φ2: the diameter of an outermost wire of the strand (2), r: the center distance between the strand (1) and the strand (2), S: the cross section of the strand (2), and α: the twist angle of the strand (2).
Abstract:
A steel cord for reinforcement of rubber articles, whose cord strength is enhanced by preventing occurrence of preceding break of the outermost layer filaments in the steel cord having a multi-twisted structure, and a pneumatic tire using it as a reinforcing material are provided.In a steel cord for reinforcement of rubber articles having a multi-twisted structure in which a plurality of strands are twisted together, which strands have a layered twisted structure in which a plurality of steel filaments are twisted together, dc/ds, which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of a core strand, and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of sheath strands, is 1.05 to 1.25.
Abstract:
A steel cord that is especially useful for reinforcing a crown portion of a tire is provided. In particular, a steel cord free from manufacturing problems existed in the conventional art and allowing for stable quality and good production efficiency is provided, and a rubber-steel cord composite and a tire that are equipped with the same are provided.A steel cord has a multiple-twist structure including N (N=2 to 8) strands 2 that are twisted together, each strand 2 having a plurality of wires 1 that are twisted together. When the diameter of each strand is denoted by d (mm), the diameter of a circle circumscribing the cord is denoted by D (mm), and the twisting pitch of the cord is denoted by P (mm), εc defined by the following expression, εc=√(−b/2+√(b2/4−c))−1 (where b denotes −1+π2(−4R2+d2)/P2, c denotes π2d2k(4π2R2+P2)/P4, R denotes (D−d)/2, and k denotes tan2(π/2−π/N)), satisfies εc≧0.005.