Abstract:
A method for forming a helix rope for a trawl comprising the steps of: a) situating upon a portion of a rope a bead of a substance being selected from a group consisting of: (i) a liquid substance; and (ii) a semi-liquid substance. A helix rope (35) for forming portions of a pelagic trawl, the helix rope comprising a braided sheath (398) formed of greater than sixteen strands (397), whereby drag is reduced. A method for forming a high strength synthetic rope useful for towing warps, trawler warps, yachting ropes, mooring lines, anchoring lines, oil derrick anchoring lines, seismic lines, paravane lines, and any other uses for rope, cable or chain.
Abstract:
A high-strength cable is a high-strength cable that has a twisted layer 21 of non-metallic reinforcing elements in outer coatings. Reinforcing elements 41 and 42 have coating elements 50 and 60, fiber elements 51 and 61 of copolyparaphenylene-3,4′-oxydiphenyleneterephthalic amide disposed in the coating elements 50 and 60, and filling materials 52 and 62 filled between the fiber elements, respectively. The lateral compression stress of the fiber elements 51 and 61 of the copolyparaphenylene-3,4′-oxydiphenyleneterephthalic amide is 75 cN/dtex or more.
Abstract:
A sling for industrial lifting made of a load-bearing core and a cover. The cover protects the plurality of yarns that make-up the core. Each core yarn is made of a number of core threads twisted together. The core yarns are twisted together where the twist is in the same direction as the individual core strands and a different direction than the twist of the cover. The present invention describes the method of twisting the core yarns together by inserting core yarns substantially parallel into a cover that has a twist opposite of each core strand. As the core strands are inserted into the cover, the twists of the individual core yarns interact with the twist of the cove, resulting in the core yarns twisting together.
Abstract:
An improved rope is formed from a blend of fluoropolymer fibers and high tenacity polyolefin fibers. The fibers and/or the rope are coated with a composition comprising an amino functional silicone resin and a neutralized low molecular weight polyethylene. The ropes are useful in marine applications, such as in deep sea lifting, and have improved cyclic bend over sheave fatigue resistance.
Abstract:
A reinforcing structure designed for handling compression stress states when the structure is molded into a composite. The structure, specifically a wrapped cord with metallic filaments contained therein, is suitable for both compression and tension load forces. The reinforcing structure has a core comprising a plurality of essentially straight, nested filaments arranged in parallel, the filaments forming a line of contact with adjacent filaments that extends along the length of the filaments. Wrapped about the core is at least one helically wound wire.
Abstract:
The invention provides a rope having a central strand and a plurality of outer strands extending helically about the central strand. Each of the outer strands consists of a plurality of elements in a helical wrap, at least some of these elements having a core of synthetic plastic filaments extending generally in parallel with one another and a sheath about the core containing the filaments. The invention also provides a method of making the rope.
Abstract:
Articles such as a net, a round sling or a splice include a resin-impregnated lengthy body having multifilamentary yarns comprised of high performance polyethylene (HPPE) fibres and a polymeric resin dispersed throughout a cross-section of the multifilamentary yarns. The the polymeric resin is a homopolymer or copolymer of ethylene and/or propylene, wherein the polymeric resin has a density as measured according to ISO1183 in the range from 860 to 930 kg/m3, a melting temperature in the range from 40 to 140° C. and a heat of fusion of at least 5 J/g.
Abstract:
A structural cable of a construction work. The structural cable comprises: a bundle of load-bearing tendons (20), a first sheath (26) containing the bundle of tendons, a second sheath (28) arranged around the first sheath, the second sheath comprising windows (31), and a plurality of light-radiating modules (46) configured to radiate light, each light-radiating module being arranged within the structural cable to radiate light through at least one window outwardly relative to the structural cable.